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The Kadomtsev-Petviashvili (KP) equation

(1) (−4ut + 6uux + uxxx)x + 3σ2uyy = 0, σ2 = ±1

describes the propagation of two-dimensional shallow water waves. The non-linear
Schrödinger (NLS) equation

(2) iψt = − 1
2ψxx + κ|ψ|2ψ

has applications in optics and water waves. One thing these two equations have in
common is that they both have analytic solutions in terms of the Riemann theta
function. Understanding the function requires drawing facts from complex analysis,
linear analysis, combinatorics, algebra, and even number theory. Riemann theta
also has application in topics in number theory, algebraic geometry, integerable
differential equations, and combinatorics.

However, even though Riemann knew of the function in the late 1800’s, it was
not until recently with the work of Deconinck and van Hoeij that we have been able
to plot one, let alone use it in a computational setting to solve equations such as
KP and NLS.

In this paper we will introduce the theory of Riemann theta functions and sum-
marize the work of Bobenko, Deconinck, Heil, van Hoeij, and Schmies which allows
us to compute Riemann theta functions to any desired numerical accuracy. We
will also discuss the Sage implementation in particular which was initiated by Nick
Alexander at UC Irvine and is now taken on by the author. Studying and imple-
menting methods for computing the Riemann theta function key components of the
author’s thesis work.

1. Introduction to Riemann Theta Functions

Let us start with the definition of the Riemann theta function:

Definition 1. (Riemann Theta Function) Let Ω ∈ Cg×g be a Riemann matrix;
i.e. Ω is symmetric and Im(Ω) is strictly positive definite. Then the Riemann theta
function, θ : Cg → Cg is defined as

θ(z|Ω) =
∑
n∈Zg

e2πi(〈n,Ωn〉+〈n,z〉).

This series converges absolutely in z and Ω and uniformly on compact sets.
Note that the function is periodic with period 1 in each z component; that is,
θ(z +m|Ω) = θ(z|Ω),∀m ∈ Zg.
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1.1. A Natural Construction of Riemann Theta Functions. One of the nec-
essary parameters is the choice of Riemann matrix Ω. In this section we describe
how to compute the Riemann matrix corresponding to a complex plane algebraic
curve.

The set of all x, y ∈ C such that

f(x, y) = ad(x)yd + · · ·+ a1(x)y + a0(x) = 0

defines a d-sheeted algebraic covering y(x) of the Riemann sphere. The behavior
at the branch points of y(x) determines the topology of the curve’s corresponding
Riemann surface. The genus of the Riemann surface can be computed explicitly
via the Hurwitz formula.

Theorem 2. (Hurwitz Formula) Let eP by the ramification index of the covering
y(x) at a point P on the Riemann surface Γ. (eP = the number of sheets of y(x)
that meet at P .) Define the total branching number

W =
∑

P branch point of Γ

(eP − 1).

The genus g of the Riemann surface is given by the Hurwitz formula

g =
W

2
− d+ 1

The genus of a curve’s Riemann surface tells us a lot about the covering’s be-
havior. To further develop the geometry of a Riemann surface we need to consider
homotopy theory and the surface’s homology group. For an introduction to ho-
motopy theory and the homology of a surface in full generality, see Munkres. [?]
With that said, given a genus g surface, Γ, there are 2g nonhomologous cycles,
a1, . . . , ag, b1, . . . , bg such that

ai ◦ aj = 0, bi ◦ bj = 0, ai ◦ bj = δij ;

where δij is the Kronecker delta and a ◦ b = 0 if and only if the cycles a and b do
not intersect. These 2g cycles form a basis for the homology group of the Riemann
surface Γ.

The cohomology of a Riemann surface is given in terms of its basis {ω1, . . . , ωg}
of holomorphic differentials of the form

ωk =
Pk(x, y)

∂yf(x, y)
dx

Definition 3. (Holomorphic Differential) A holomorphic (resp. meromorphic)
differential ω on a Riemann surface Γ is a family {(Ui, zi, ωi)} such that {(Ui, zi)}
is a holomorphic covering of Γ and ωi = fi(zi)dzi where fi : Ui → C is a holo-
morphic (resp. meromorphic) function and where the chain rule is preserved under
coordinate transformations φij : Ui ∩ Uj → Ui ∩ Uj.

Note that the denominator ∂yf(x, y) vanishes at the branch points and singular
points of the covering y(x) whereas the differential form dx vanishes at the branch
points. Hence, for ωk to be a holomorphic differential we need to find a Pk(x, y)
that vanishes at the singular points.

A period matrix, Ω̃, is obtained by integrating the normalized differentials on the
elements of the Riemann surface’s homology basis.

Ω̃ = (A B) ∈ Cg×2g
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where

A = (Aij)
g
i,j=1, Aij =

∮
aj

ωi

B = (Bij)
g
i,j=1, Bij =

∮
bj

ωi.

However, with an appropriate choice of holomorphic differentials (basis of the co-
homology of Γ) such that

∮
aj
ωi = δij , we have

Ω̃ = (I Ω)

where Ω is the desired Riemann matrix appearing in the Riemann theta function
and Ω̃ is called the normalized period matrix of the Riemann surface.

The normalized period matrix encodes much of the geometric information about
a curve’s Riemann surface . The column space of Γ describes a lattice Λ in Cg and
is given by

Λ = {v ∈ Cg |v = m+ Ωn;m,n ∈ Zg}
The fundamental parallelepiped, also known as the Jacobian, of the normalized
period matrix is the quotient space

J(Γ) = Cg /Λ.

In the case when g = 1, Λ is simply a lattice in C and is isomorphic to the complex
torus. This particular case describes the geometry of an elliptic curve.

2. Computing Riemann Theta Functions

The ability to compute a Riemann matrix corresponding to a plane algebraic
curve as well as the Riemann theta function itself for a given Riemann matrix is
already implemented in Maple’s algcurves package. This work is the result of
the work of Deconinck and van Hoeij. For several reasons, the authors of this
Maple implementation would like to see their code ported to Sage where they and
future developers, such as myself, can have tighter control over its performance and
interaction with other components of the software.

Given a complex plane algebraic curve, computing the curve’s Riemann theta
function requires several components:

• Compute the Riemann matrix, Ω. This requires several components:
– Compute the monodromy group about all of the branch points. The

monodromy group is a permutation group describing which sheets are
connected at each branch point and thus the geometry of the Riemann
surface.

– Compute the basis of the Riemann surface homology {ak, bk} using
the monodromy group.

– Compute the basis of the cohomology {ωk} by numerically integrating
about the elements of the homology.

• Given Ω, determine the number of terms needed in θ(z|Ω) to achieve a de-
sired accuracy. See “Computing Riemann Theta Functions” by Bobenko,
Deconinck, Heil, van Hoeij, and Schmies for a uniform approximation for-
mula with arbitrary precision. Here, we will outline the steps needed to
compute the pointwise approximation to theta(z|Ω) for a given z:

– Split z and Ω into their real and imaginary parts.
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– Use Equation (6) in “Computing Riemann Theta Functions” to split
the exponential growth terms off from the oscillatory part of θ(z|Ω).

– Given an error bound, ε, determine the set of integer points SR needed
to achieve this desired accuracy: this involves Cholesky decomposo-
tions, floating point LLL, and the inverse incomplete gamma function.

– Compute the sum and combine the exponential and oscillatory terms.

.

As of the writing of this paper the author has only implemented the evaluation
of θ(z|Ω) and its derivatives for a given Riemann matrix, Ω. Furthermore, this
implementation only uses the pointwise approximation of θ. There are several
components that should be written before this code is implemented in Sage:

• unfiorm approximation fomulas for θ: this allows us to use the same bound-
ing ellipse for all points z. Cacheing these points will result in a speed im-
provement when evaluating θ on a large domain; for example, when plotting
θ.
• Cythonized summation: the number of points needed in SR grows exponen-

tially with the genus, g. For example, in order to evaluate θ corresponding
to a genus g = 6 curve with 30 bits of precision one requires on the order
of 105 integer points. There are good reasons for looking at large genus
curves so we should squeeze out as much performance as possible in our
computation.
• Riemann theta with characteristic: Riemann theta with characteristic, de-

noted θ[α, β](z|Ω), is a commonly used modification of θ and hence should
be made easily accessible.

The construction of Ω from a plane algebraic curve is part of the author’s thesis
work. It is a much more difficult computation than the evaluation of θ. Devel-
opment of a Sage implemention will commence once Riemann theta is in suitable
condition and ready for review.
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