Hilbert Symbols

Probably La

1 Hilbert Symbols over Number Fields

There are many motivations for studying Hilbert symbols over number fields. They give useful information about whether a quaternion algebra is a division ring or a matrix algebra. This information additionally allows us to compute maximal orders of quaternion algebras. [Voight] Away from quaternion algebras, the Hilbert symbol is seen to encode information as to whether the quadratic form $a x^{2}+b y^{2}$ represents 1 over a given field. [Voight] Finally, in elliptic curves the Hilbert symbol is used in the algorithm to compute the root number. [Sage Days 22 code]

Throughout this paper, F is a number field with ring of integers \mathcal{O}_{F} and $B=$ $\left(\frac{a, b}{F}\right)$ is a quaternion algebra over F with basis $1, i, j, i j$ where $i^{2}=a, j^{2}=b$, and $i j=-j i$. I will assume a working knowledge of quaternion algebras and basic algebraic number theory. For an introduction to quaternion algebras and background for this paper see John Voight, The arithmetic of quaternion algebras, book in preparation. http://www.cem m.edu/~voight/crmquat/ book/quat-modforms-041310.p

1.1 Valuations.

Let v be a valuation of F. Then the field F_{v} has ring of integers R_{v} and let π_{v} be a uniformizer (denoted by π when v is obvious). Then we can define $B_{v}=B \otimes F_{v}$. Then B_{v} is a quaternion algebra over F_{v}.

Useful fact about local nc_. If F is a number field with noncomplex valuation v, then F_{v} has a unique unramified quadratic extension K_{v}. This fact gives us the following:

Lemma 1. Let v be a no: plex place of F. Then there is a unique quaternion algebra B_{v} over F_{v} which division ring up to F_{v}-algebra isomorphism.

As \mathbb{C} is algebraically closed, there is no division quaternion algebra. Over \mathbb{R} the unique division algebra is the Hamiltonians, $\mathbb{H}=\left(\frac{-1,-1}{\mathbb{R}}\right)$. Over \mathbb{R}, if $B=\left(\frac{a, b}{\mathbb{R}}\right)$ is not a division algebra, then $B \cong M_{2}(\mathbb{R})$.

If v is nonarchimedean, then F_{v} has \backsim as it's unique unramified extension. Thus to create a division ring over $F_{v} \cong\left(\frac{K_{v}, \pi_{v}}{F_{v}}\right)$. Similarly, if B_{v} is not a division ring, then $B_{v} \cong M_{2}\left(F_{v}\right)$.

1.2 Hilbert Symbols

To encode the two possibilities, division ring or matrix algebra, we use the Hilbert symbol.

Definition 1. Let K be a field and $a, b \in K$. \square_{2} the Hilbert symbol is defined to be

$$
(a, b)_{K}=\left\{\begin{array}{cl}
1 & \text { when } B=\left(\frac{a, b}{K}\right) \text { is split. } \\
-1 & \text { otherwise. }
\end{array}\right\}
$$

Notice that K can be a global field (i.e., $K=F$) or we could take K to be a local field, $K=F_{v}$. Notice that B is split if and only if B has a zero divisor. Additionally, we have the following theorem:

Theorem 1. Let K be a field, $a, b \in K^{\times}$and $B=\left(\frac{a, b}{K}\right)$. Further, let $L=K[i]$ where $i^{2}=a$. Letting $N_{L / K}\left(L^{\times}\right)$denote the norm from L / K on \square 'e have that $(a, b)_{K}=1$ if and only if $b \in N_{L / K}\left(L^{\times}\right)$.
This theorem is very handy if we also recall that F_{v} has a unique unramified quadratic extension, K_{v}. In the case that B is ramified at v, we then have $B_{v} \cong\left(\frac{K_{v}, \pi_{v}}{F_{v}}\right)$. So if v divides 2 and if $B_{v} \cong\left(\frac{a, b}{F_{v}}\right)$ with $K_{v}=F_{v}[i], i^{2}=a$, then $(a, b)_{v}=1$ if $\operatorname{ord}_{v}(b)$ even and $(a, b)_{v}=-1$ if $\operatorname{ord}_{v}(b)$ is odd.

In the case that F is understood and we are computing the Hilbert symbol locally, we use the following notation: $(a, b)_{v}:=(a, b)_{F_{v}}$. If v is a complex place, then $B_{v}=B \sim$ must be split. This is because \mathbb{C} is algebraically closed and thus has no fiel ensions. Thus for the rest of the paper, when I refer to a place of ${ }^{\square} \boldsymbol{\top}$ will mean either a real place or a finite place.
Theorem
Lemma 2. We have the following equalities:

1. $(a, b)_{K}=(b, a)_{K}=(-a b, b)_{K}$
2. For any $u, t \in K^{\times},(a, b)_{K}=\left(a t^{2}, b u^{2}\right)_{K}$.

These equalities hold as the quaternion algebras in each case are isomorphic.

2 Algorithms and Implementations

The Hilbert symbol is currently implemented in both Magma and Pari. In Magma, the Hilbert symbol was implemented by John Voight using his algorithm from Identifying the Matrix Ring. I will outline this algorithm below. Pari uses a similar algorithm. Both algorithms are divided into two cases, odd places and even places.

Definition 2. We say that v is an odd place if v is archimedean or if v is an odd prime (lies over an odd prime of \mathbf{Z}.) Otherwise we say that v is even. In this case v lies over 2.

The main difference between the Magma and Pari implementations is when computing $(a, b)_{v}$ and v is an even place.

2.1 Voight's Algorithm

As mentioned above, this algorithm has two cases, odd places and even places. The case where v is an odd place can be simplified to computing what Voight calls the square symbol:
Definition 3. Take $a \in F$ and v an odd place tr ie square symbol is defined $^{\text {a }}$ as follows:

$$
\left\{\frac{a}{v}\right\}=\left\{\begin{array}{cl}
1 & \text { if } a \in F_{v}^{\times 2} \\
-1 & \text { if } a \notin F_{v}^{\times 2} \text { and } \operatorname{ord}_{v}(a) \text { is even } \\
0 & \text { if } a \notin F_{v}^{\times 2} \text { and } \operatorname{ord}_{v}(a) \text { is odd }
\end{array}\right\} .
$$

With the square symbol, the odd case relies on the following theorem from [Voight]:

Theorem 3. Let v be an odd place of F and let $a, b \in F_{v}^{\times}$. Then $(a, b)_{v}=1$ if and only if

$$
\begin{gathered}
\left\{\frac{a}{v}\right\}=1 \text { or }\left\{\frac{b}{v}\right\}=1 \text { or }\left\{\frac{-a b}{v}\right\}=1 \\
\text { or if }\left\{\frac{a}{v}\right\}=\left\{\frac{b}{v}\right\}=-1
\end{gathered}
$$

Thus by computing $\left\{\frac{a}{v}\right\},\left\{\frac{b}{v}\right\}$, and possibley $\left\{\frac{-a b}{v}\right\}=1$ we can compute $(a, b)_{v}$.

Computing the square symbol is straight forward. If v is complex, then $\left\{\frac{a}{v}\right\}$ is trivial. If v is real, $\left\{\frac{a}{v}\right\}$ is 1 or 0 if $a>0$ or $a<0$ respectively. If v is nonarchimedean, we can do a little more work and reduce this to Legendre symbol. Suppose $\operatorname{ord}_{v}(a)=e$. If e is odd then $\left\{\frac{a}{v}\right\}=0$. If e is even then we define $a_{0}=a \pi_{v}^{-e / 2}$ and now $\left\{\frac{a}{v}\right\}=\left(\frac{a_{0}}{v}\right)$, so we've reduced the case of computing the Legendre symbol.

Now for the even case. I ${ }^{n}$, be an even place, which will be denoted by the prime \mathfrak{p}, and $B_{\mathfrak{p}}=\left(\frac{a, b}{F_{\mathfrak{p}}}, ~\right.$ roughout the even case it is useful to remember that the Hilbert symbol computes whether $B_{\mathfrak{p}}$ is ramified or split. We know that $F_{\mathfrak{p}}$ has a unique unramified quadratic extension $K_{\mathfrak{p}}$. We also know that in the split case $B_{\mathfrak{p}}=M_{2}\left(F_{\mathfrak{p}}\right)$ thus has a zero divisor. So our goal in the even case is to either:

- find $K=F_{\mathfrak{p}}\left[i^{\prime}\right]$ for some $i^{\prime} \in B_{\mathfrak{p}}$ with $\left(i^{\prime}\right)^{2}=a^{\prime}$ and compute $\operatorname{ord}_{\mathfrak{p}}\left(b^{\prime}\right.$
- or t 1 a zero divisor.

Algorithm for even places: Let $B=\left(\frac{a, b}{F}\right), a, b \in F^{\times}, \mathfrak{p}$ be an even prime of F, and $e=\operatorname{ord}_{\mathfrak{p}}(2)$. This algorithm returns $(a, b)_{\mathfrak{p}}$.

1. Multiply a and b by squares in F^{\times}so that $a, b \in \mathcal{O}_{F}$.
2. Compute $y, z, w \in \mathcal{O}_{F}$ so that $1-a y^{2}-b z^{2}+a b w^{2} \equiv 0\left(\bmod \mathfrak{p}^{2 e}\right)$. Take $i^{\prime}=\frac{1+y i+z i+w i j}{2}$ and let $p(t)=t^{2}-\operatorname{trd}\left(i^{\prime}\right) t+\operatorname{nrd}\left(i^{\prime}\right)$ be the minimal polynomial of i^{\prime} in \mathcal{O}_{F}. Notice that $\operatorname{nrd}\left(i^{\prime}\right)=1-y^{2}-z^{2}-w^{2} \equiv 0\left(\bmod \mathfrak{p}^{2 e}\right)$, so we've constructed a probable zero divisor in $F_{\mathfrak{p}}$.
3. If p has a solution mod v then by Hensel's lemma we can lift this to a root in $\mathcal{O}_{F, \mathfrak{p}}$ and we've found a zero divisor, i^{\prime}. Thus return 1.
4. Otherwise, we can change basis by taking $j^{\prime}=(z b) i-(y a) j$ and $b^{\prime}=\left(j^{\prime}\right)^{2}$ (so that $i^{\prime} j^{\prime}=-j^{\prime} i^{\prime}$). As p has no roots in $F_{\mathfrak{p}}$, by adjoining the root i^{\prime} of p to $F_{\mathfrak{p}}$ we get the unique unramified quadratic extenion $K_{\mathfrak{p}}=F_{\mathfrak{p}}\left(i^{\prime}\right)$. Thus if $\operatorname{ord}_{\mathfrak{p}}\left(b^{\prime}\right)$ is even, return 1 and otherwise, return -1 .

To use this algorithm we must be able to compute y, z, w as above. Up to this point, Sage has all the machinery to compute Hilbert symbols natively. To compute the y, z, w in an intelligent manner (i.e., not just looping through all choices), Voight uses a Hensel-type lift which requires working in residue rings, $\mathcal{O}_{F} / \mathfrak{p}^{n}$ for some integer n of size up to $2 e$. Sape dnes not yet have general residue rings implemented. We start with a, b mulitr \longrightarrow jy elements in $F^{\times 2}$ so that a, b are square free. Thus we have the following cases for their valuations:

1. $\operatorname{ord}_{\mathfrak{p}}(a)=0$ and $\operatorname{ord}_{\mathfrak{p}}(b)=1$
2. $\operatorname{ord}_{\mathfrak{p}}(a)=\operatorname{ord}_{\mathfrak{p}}(b)=0$

Notice that if $\operatorname{ord}_{\mathfrak{p}}(a)=\operatorname{ord}_{\mathfrak{p}}(b)=1$, then $-a b$ is not square free, so we can reduce to one of the previous cases by possibly replacing a or b with $-a b$.

In the following algorithms, when we write $\sqrt{u}, \mathrm{w} \square$ an that for $u \in\left(\mathcal{O}_{F} / \mathfrak{p}^{2 e}\right)^{\times}$ take any lift of $\sqrt{u} \in\left(\mathcal{O}_{F} / \mathfrak{p}\right)^{\times}$to $\mathcal{O}_{F} / \mathfrak{p}^{2 e}$.

Case 1: $\operatorname{ord}_{\mathfrak{p}}(a)=0$ and $\operatorname{ord}_{\mathfrak{p}}(b)=1$
This algorithm outputs $y, z \in \mathcal{O}_{F} / \mathfrak{p}^{2 e}$ such that

$$
1-a y^{2}-b z^{2} \equiv 0(\bmod
$$

1. Initialize $y=1 / \sqrt{a}$ and $z=0$.
2. Define $N:=1-a y^{2}-b z^{2} \in \mathcal{O}_{F} / 4 \mathcal{O}_{F}$ and let $t:=\operatorname{ord}_{\mathfrak{p}}(N)$. If $t \geq 2 e$, go to step 3. Otherwise, if t is even, replace y with

$$
y=y+\sqrt{\frac{N}{a \pi^{t}}} \pi^{t / 2}
$$

and if t is odd, replace z with

$$
z=z+\sqrt{\frac{N}{b \pi^{t-1}}} \pi^{\lfloor t / 2\rfloor}
$$

Return to step 2.
3. Return y, z.

Proof: See Voight.
Case 2: $\operatorname{ord}_{\mathfrak{p}}(a)=\operatorname{ord}_{\mathfrak{p}}(b)=0$
This algorithm outputs $y, z, w \in \mathcal{O}_{F} / \mathfrak{p}^{2 e}$ such that

$$
1-a y^{2}-b z^{2}+a b w^{2} \equiv 0\left(\bmod p^{2}\right.
$$

1. If $a, b \in\left(\mathcal{O}_{f} / \mathfrak{p}^{e}\right)^{\times 2}$ find a_{0} and b_{0} such that

$$
\left(a_{0}\right)^{2} a \equiv 1\left(\bmod \mathfrak{p}^{e}\right) \text { and }\left(b_{0}\right)^{2} b \equiv 1\left(\bmod \mathfrak{p}^{e}\right)
$$

Return $y=a_{0}, z=b_{0}, w=a_{0} b_{0}$.
2. Swap a, b so that $a \notin\left(\mathcal{O}_{F} / \mathfrak{p}^{e}\right)^{\times}$. Take t to be the largest integer such that $a \in\left(\mathcal{O}_{F} / \mathfrak{p}^{t}\right)^{\times 2}$ but $a \notin\left(\mathcal{O}_{F} / \mathfrak{p}^{t+1}\right)^{\times 2}$. Now lift, meaning, find a_{0} and a_{t} in \mathcal{O}_{F} so that $a=a_{0}^{2}+\pi^{t} a_{t}$. We have now reduced to Case 1. Input $a,-\pi a_{t} / b$ into Case 1 to get y_{1}, z_{1}. Return

$$
y=\frac{1}{a_{0}}, z=\frac{\pi^{\lfloor t / 2\rfloor}}{a_{0} z_{1}}, w=\frac{y_{1} \pi^{\lfloor t / 2\rfloor}}{a_{0} z_{1}} .
$$

Proof: See Voight.
So the only problem with implementing this algorithm in Sage is lifting from $\left(\mathcal{O}_{F} / \mathfrak{p}\right)^{\times}$to $\mathcal{O}_{F} / \mathfrak{p}^{2 e}$.

2.2 Pari's Imlementation

For the case v is an odd place, Pari's implementation seems to be the same as Voigh or the even place case Pari calls a function called
nf_hyperell_locally_soluble
which:

```
/* = 1 if equation y^2 = z^deg(T) * T(x/z) has a pr-adic rational solution
    * (possibly (1,y,0) = oo), O otherwise.
    * coeffs of T are algebraic integers in nf */
```

and this and the full source code can be found at:
http://pari.math.u-bordeaux.fr/cgi-bin/viewcvs.cgi/trunk/src/basemath/
buch4.c?view=markup\&root=pari\&pathrev=12778

3 Code/patch in sage

The trac ticket for this project is number 9321 To wrap Pari's Hilbert symbol in Sage the following code works, but is slov

```
def pari_hs(K,a,b,P):
    nK = gp(K)
    na = gp(a)
    nb}=\textrm{gp}(\textrm{b}
    hnfP = nK.idealhnf(gp(P))
    mP = gp.idealfactor(nK,hnfP)
    np = mP[1,1]
    return nK.nfhilbert(na,nb,np)
```

and to compute the Hilbert symbol in Magma the analogous code is:

```
>P<x>:=PolynomialRing(IntegerRing());
>f:=x^5-23;
>K<a>:=NumberField(f);
>b:=-a+5;
>g:=-7*a^4+13*a^3-13*a^2-2*a+50;
>OK:=RingOfIntegers(K);
>Q:=ideal<OK|g>;
>HilbertSymbol(a,b,Q);
>1
```


4 References

[Sage Days 22 code] http://wiki.sagemath.org/days22/dokchitser?action= AttachFile\&do=view\&target=root_number.sage
[Voight] John Voight, Identifying the Matrix Ring, submitted. http://www. cems.uvm.edu/~voight/articles/quatalgs-040110.pdf

