581b -- finiteness of the class group

* Make sure to mention that 581d will be on a number theory topic this week -- elliptic curve computation in Sage.
* Announce ECC is next week: http://2010.eccworkshop.org/
* Plan for course:
* Prove the main theorem of the course (starts this week, may continue to next week): finiteness of class group; Dirichlet's unit theorem (both for ring of integers of number fields)
* Key theorems and structure that make it possible to compute (next week): computing O_K, factoring p*O_K, computing class group (and examples of how to use Sage to compute these things...)
* Local structure (and Galois representations):

Theorems about decomposition and inertia groups, Definition of Frobenius elements, zeta functions, L-series

* Adeles, ideles, and finiteness of the class group: a language that you must know to understand a lot of number theory literature.
* Class field theory: statements using both ideal and idelic language
* If time permits -- Automorphic forms and representations, the Langlands program, what did that new Fields Medalist do? (prove the "Fundamental Lemma") (Adeles are required to talk about this stuff...)

The class group of a Dedekind domain

Recall:
$R=$ Dedekind domain (noetherian, krull.dim(R)<=1, R integrally closed in $K=F r a c(R))$
$\operatorname{Div}(R)=$ group of fractional ideals
Using "Div" since like divisors on a curve; notation only good because of following theorem, we proved completely last week:

Theorem: Div(R) is a free abelian group (free on the nonzero prime ideals of R).
Defn: A *principal fractional ideal* is one of the form:
I = alpha*R for 0 != alpha in K.

Defn: Prin(R) = group of principal fractional ideals
Defn: Cl(R) = $\operatorname{Div}(R) / \operatorname{Prin}(R)$ <------ so it's an abelian group
Prop: Prin(R) isom $K^{\wedge} * / R^{\wedge} *$.
Proof: $K^{\wedge} * ~-->~ P r i n(R), ~ b y ~ d e f i n i t i o n . ~$
kernel $=\left\{u\right.$ in $K^{\wedge} *: u * R$ has no prime factors $\}=\left\{u\right.$ in $\left.K^{\wedge} *: u * R=R\right\}=R^{\wedge} *$ Note: if u in $K^{\wedge} *$ with $u * R=R$, then u in R, since 1 in R, so $u=u * 1$ in R.

Thus exact sequence:

$$
1 \text {--> R^* --> K^* --> } \operatorname{Div}(\mathrm{R}) ~-->\mathrm{Cl}(\mathrm{R}) ~-->1
$$

Our main goal is to prove the following *deep theorem* (the deepest in this class?):

Theorem: If $R=0 _K$ is ring of integers of number field, then $C l(R)$ is $* f i n i t e *$.
Strategy of proof:

* (easy) Use maps K \--> C and log to embed O_K into some Euclidean space R^n.
* (hard) Use a geometric argument ("geometry of numbers") to show that each ideal class in $\mathrm{Cl}(\mathrm{R})$ contains an ideal I with
$\operatorname{Norm}(\mathrm{I})<=(4 / \mathrm{pi})^{\wedge} \mathrm{s} *\left(\mathrm{n}!/ \mathrm{n}^{\wedge} \mathrm{n}\right) *$ sqrt (|d_K|)
Here, Norm(I) = \#(R/I) and d_K = "discriminant" of K.
* (trivial) Observe that there are finitely many ideals of bounded norm.

Remark: Above theorem not true in general! Even "Norm(I)" doesn't
make sense in general, since R / I need not be finite, e.g., if $R=Q[x]$ and $I=(x)$, then $R / I=Q$ is infinite. Also, whatever d_K is, it wouldn't make sense in general either.

Example in which $\mathrm{Cl}(\mathrm{R})$ is not finite.

$$
R=C[x, y] /\left(y^{\wedge} 2-\left(x^{\wedge} 3+1\right)\right), \quad C=\text { complex numbers }
$$

The nonzero prime ideals of R are the ideals

$$
P_{-}\{a, b\}=(x-a, y-b)
$$

where (a, b) is a complex point on the affine curve $\mathrm{y}^{\wedge} 2=\mathrm{x}^{\wedge} 3+1$.
A principal fractional ideal is got by a taking any rational function alpha $(x, y)=f(x, y) / g(x, y)$, with f, g polys, and considering the fractional ideal it generates. We think about this fractional ideal
in terms of its prime factorization (divisor!), so
alpha*R = prod $P_{-}\left\{a_{-} i, b_{-} i\right\} / \operatorname{prod} Q_{-}\left\{c_{-} j, d_{-}\right\}$
where the ($\left.a_{-} i, b_{-} i\right)$ are the zeros of $f(x, y)$ and ($c_{-} j, d_{-} j$) the poles, with appropriate multiplicities.

Claim:
$P_{-}\{a, b\}$ is not in $\operatorname{Prin}(R)$

Proof: If alpha=f/g and alpha*R = $P_{-}\{a, b\}$, then alpha is a rational function on $y^{\wedge} 2=x^{\wedge} 3+1$ which has no poles and one zero. It thus extends to a rational function of degree 1 on the projective closure C of $y^{\wedge} 2=x^{\wedge} 3+1$, which would extend to an isomorphism to $P^{\wedge} 1$ (see ch 1 of Hartshorne), a contradiction since C has genus 1 and $P^{\wedge} 1$ has genus 0 .

NOTE: Totally false if we instead use a genus 0 curve, e.g., C[X].

```
To see that Cl(R) is infinite, take any nonzero point z = (a,b)
and note that P_{a,b} defines a nonzero element of Cl(R).
    * The group law is compatible with the the group operation on Cl(R).
    (explain this)
    * For n=1,2,3,\ldots., get P_{n*z} distinct primes that are all nonzero
    elements of Cl(R), so Cl(R) is infinity.
In fact, Cl(R) is *uncountable*.
---
So there is something very special with R = O_K that we haven't seen
so far, which makes the classgroup small.
DISCRIMINANTS:
A key step in our argument is to introduce a notion of discriminant \(D\) of O_K, and note that there are only finitely many ideals with norm at most |D|.
Definition: Let a1, ..., an be a Q-basis for K. Then \(\operatorname{Disc}(a 1, \ldots, a n)=\operatorname{det}(\operatorname{Tr}(a i * a j))\)
Let \(R=\) ring of integers \(O_{-} K\) of \(K\).
Definition:
```

```
Disc(R) = Disc(a1,...,an)
```

```
Disc(R) = Disc(a1,...,an)
```

```
where a1,...,an any basis for R as a ZZ-module. Often one
writes Disc(K) := Disc(R).
Remark: Disc(R) is nonzero and well defined. (Exercise)
More generally, if S is any finite index subring of R, let Disc(S) be
the discriminant of any ZZ-basis for S.
Proposition: Disc(S) = Disc(R) * [R:S]^2
NORMS OF IDEALS:
Definition (Lattice Index):
    L, M -- "lattices" in vector space V over Q
                so L, M are Z-module of rank dim(V) st Q*L=Q*M = V.
    [L:M] =defn= |det(A)| where A any linear automorphism st A(L)=M.
If M contained in L, then [L:M]=#(L/M) is usual index
In general, for any M,L,N:
    [L:N] = [L:M]*[M:N]
```

by basic properties of linear transformations and determinants.
Defn:

```
I - fractional ideal of R
Norm(I) = [R : I]
```

which is a nonzero rational number.
Prop:
B = positive integer
Then set of integral ideals I in R with norm(I) <= B is finite.
Proof:
An integral ideal I is a subgroup of R of index equal to the norm of
I. If G is any finitely generated abelian group, then there are only
finitely many subgroups of G of index at most B, since the subgroups
of index dividing an integer n are all subgroups of G that contain $n G$,
and the group $G / n G$ is finite.

