Math 581d, Fall 2010, Homework 7

William Stein

Due: November 17, 2010

Do the following 10 problems, and turn them in by Wednesday, November 17, 2010. As usual, you can find the latex of this file at http://wstein.org/ edu/2010/581b/hw/. You may use mathematics software however you want in this problem set.

Let E be the elliptic curve defined by equation $y^{2}=x^{3}+2 x-1$.

```
sage: E = EllipticCurve([2,-1]); E
Elliptic Curve defined by y^2 = x^3 + 2*x - 1 over Rational Field
sage: E.plot(plot_points=300)
```


1. How many elements $P \in E(\mathbf{C})$ have additive order dividing 2 ?
2. Let K be the number field $\mathbf{Q}(E[2])$, i.e., the number field got by adjoining to \mathbf{Q} the x and y coordinates of every element of order 2 in $E(\mathbf{C})$. What is $n=[K: \mathbf{Q}]$?
3. What is the Galois group of K over \mathbf{Q} ? In addition to the galois_group command in Sage, I find the embeddings command useful, since it gives every element of the Galois group explicitly as a map. This will be useful later in Problem 9 below.
```
sage: phi = K.embeddings(K); phi
..
Ring endomorphism of Number Field in b with defining polynomial ...
    Defn: b |--> -140/12461*b`5 + ...
sage: phi[1](K.0)
```

4. What is the abstract structure of the unit group of K ? I.e., if you write $U_{K}=\mathcal{O}_{K}^{\times}$as $T \times \mathbf{Z}^{m}$, with T finite, what is T and what is m ?
5. What is the structure of the class group of the ring of integers of K ?
6. Which primes are ramified in the field K ? (Recall that a prime p ramifies in a field K if the prime factorization of $p \mathcal{O}_{K}$ is not square free, and the primes that ramify are exactly the primes that divide the discriminant of \mathcal{O}_{K}.)
7. Describe a fixed choice of injective homomorphism $\operatorname{Gal}(K / \mathbf{Q}) \hookrightarrow \mathrm{GL}_{2}\left(\mathbf{F}_{2}\right)$. Congratulations, you are now the proud owner of a mod 2 Galois representation $\rho: \operatorname{Gal}(K / \mathbf{Q}) \rightarrow \mathrm{GL}_{2}\left(\mathbf{F}_{2}\right)$.
8. How does the prime ideal $5 \mathcal{O}_{K}$ factor in K ? What about the primes $7 \mathcal{O}_{K}$ and $11 \mathcal{O}_{K}$?
9. Let \mathfrak{p} be one of the primes of \mathcal{O}_{K} lying over 5 , i.e., dividing $5 \mathcal{O}_{K}$. Compute $\rho\left(\operatorname{Frob}_{\mathfrak{p}}\right) \in \mathrm{GL}_{2}\left(\mathbf{F}_{2}\right)$ explicitly. Do the same for $p=7$ and $p=11$.
10. Let N_{p} be the number of points on E modulo $p=5, p=7$, and $p=11$, and let $a_{p}=p+1-N_{p}$.
```
sage: E.Np(5)
```

7

As a consistency check, you should find that $\operatorname{Trace}\left(\rho\left(\operatorname{Frob}_{\mathfrak{p}}\right)\right) \equiv a_{p}(\bmod 2)$.

