Math 581b, Fall 2010, Homework 6

William Stein

Due: Wednesday, November 10, 2010

Do the following problems, and turn them in by the beginning of class on Wednesday, November 10, 2010. There are 3 problems. NOTE: In case I haven't mentioned it before, you are encouraged to talk to other students in class about homework (if you get a lot of help on a problem from somebody, acknowledge them).

1. Read some background related to your final project (e.g., papers, chapters of a book, whatever). Briefly summarize what you read here.
2. (This problem is based on a problem in Marcus, Number Fields, page 156.) Let $K \subset \mathbf{C}$ be a number field that is a Galois extension of \mathbf{Q}.
(a) Prove that K has degree 1 or 2 over $K \cap \mathbf{R}$. (Hint: write down a quadratic polynomial with real coefficients satisfied by a generator of K.)
(b) Prove that $K \cap \mathbf{R}$ is a Galois extension of \mathbf{Q} if and only if $K \cap \mathbf{R}$ has no non-real embeddings into \mathbf{C}.
(c) Prove that $K \cap \mathbf{R}$ is a Galois extension of \mathbf{Q} if and only if the subgroup of $\operatorname{Gal}(K / \mathbf{Q})$ generated by complex conjugation (acting on K) is a normal subgroup. (Obviously, you can state any theorems from Galois theory.)
(d) Let $U=\mathcal{O}_{K}^{*}$ be the group of units of the ring of integers of the number field K. Prove that $U /(U \cap \mathbf{R})$ is finite if and only if complex conjugation is in the center of the group $\operatorname{Gal}(K / \mathbf{Q})$. (Hint: compute " $r+s-1$ " for both K and $K \cap \mathbf{R}$, in various cases.)
3. (This problem is based on a problem in Marcus, Number Fields, page 156. It also uses results from the previous problem above.)
(a) Let u be a unit in $\overline{\mathbf{Z}}$, which we view as a subring of the complex numbers \mathbf{C}. Prove that the complex conjugate \bar{u} and the absolute value $|u|=\sqrt{u \bar{u}}$ are both also units in $\overline{\mathbf{Z}}$.
(b) Let $K \subset \mathbf{C}$ be the Galois closure of a cubic field $M=\mathbf{Q}(\sqrt[3]{p})$, where p is a prime number, so $[K: \mathbf{Q}]=6$ and $\operatorname{Gal}(K / \mathbf{Q})=S_{3}$, the symmetric group on 3 symbols. Prove that $U /(U \cap \mathbf{R})$ is infinite, where $U=\mathcal{O}_{K}^{*}$.
(c) Show that the field K in part 3 b above contains a unit having absolute value 1 but which is not a root of unity. (Hint: Let $u \in U$ be a unit from part 3b with the property that $u^{n} \notin \mathbf{R}$ for any integer $n \neq 0$, and consider u / \bar{u}.)
(d) Use Sage (or Magma or Pari or Mathematica...) to find an explicit example that illustrates part 3c.
