Math 581b, Fall 2010, Homework 3

William Stein
Assigned: Wednesday, October 13, 2010

Do the following problems, and turn them in by the beginning of class on Wednesday, October 20, 2010. There are 5 problems.

1. Is the ideal $(2, \sqrt{-6})$ in the Dedekind domain $R=\mathbf{Z}[\sqrt{-6}]$ principal or not? (Prove your answer.) Recall that this came up during the lecture on Monday, Oct 11.
2. (a) What is the discriminant of $R=\mathbf{Z}[\sqrt{-6}]$?
(b) What is the discriminant of the subring $S=\mathbf{Z}[5 \sqrt{-6}]$ of R ?
3. For which of the integers $n \in\{-1,0,1,2,3,4,5,6,7,8,9,10\}$ is there an elements $\alpha \in \mathbf{Z}[\sqrt{-6}]$ with norm n ? (Recall that the norm of $a+b \sqrt{-6}$ is $(a+b \sqrt{-6})(a-b \sqrt{-6})=a^{2}+6 b^{2}$.)
4. Is there an element of $\mathbf{Q}(\sqrt{-6})$ of norm 3 ?
5. Let n be the number of ideals of $\mathbf{Z}[\sqrt{-6}]$ with norm ≤ 2010. Give an explicit upper bound on n, e.g., an integer M such that $n \leq M$. (It's fine if M is a wild overestimate of n, as long as you justify that your upper bound is valid.)
