Math 581b, Fall 2010, Homework 2

Assigned: Wednesday, October 6, 2010

Do the following problems, and turn them in by the beginning of class on Wednesday, October 13, 2010. There are 2 problems.

1. For each of the following rings, determine whether or not it is a Dedekind domain. (Obviously, explain your reasoning.)
(a) The polynomial ring $k[x, y]$ in two variables, where k is a field.
(b) The ring \mathbf{Z}_{p} of p-adic integers.
(c) The noncommutative (!) ring $M_{2}(\mathbf{Z})$ of 2×2 integer matrices.
(d) The ring $\overline{\mathbf{Z}}$ of all algebraic integers.
(e) The field $\overline{\mathbf{Q}}$ of all algebraic numbers.
(f) The ring $\mathbf{Z}[\sqrt{3}]$.
(g) The ring $\mathbf{Z}[\sqrt{5}]$.
(h) The affine coordinate ring $\mathbf{C}[x, y] /\left(y^{2}-x^{3}\right)$ of a cuspidal cubic over the complex numbers.
(i) The ring $\mathbf{Z}\left[\frac{1}{2}\right]$ of rational numbers whose denominator is a power of 2.
(j) The ring $\mathbf{Z}[\sqrt{2}, \sqrt{3}, \sqrt{5}, \sqrt{7}, \sqrt{11}, \ldots]$ generated by the square roots of all prime numbers.
(k) The quotient ring $\mathbf{Z}[x] /\left(x^{2}\right)$, which is a ring with an element whose square is 0 .
(l) The quotient ring $\mathbf{Z}[x] /\left(x^{2}-1\right)$.
(m) The direct sum $\mathbf{Z} \oplus \mathbf{Z}$, so the direct sum of two copies of \mathbf{Z}.
(n) Any finite integral domain.
2. Let K be a quadratic field (i.e., a number field of degree 2) and let $\alpha \in K$. If $\operatorname{Norm}_{K / \mathbf{Q}}(\alpha) \in \mathbf{Z}$ and $\operatorname{Tr}_{K / \mathbf{Q}}(\alpha) \in \mathbf{Z}$, does it necessarily follow that $\alpha \in \mathcal{O}_{K}$? What if K has degree 3 instead of 2 ?
