Math 581b, Fall 2010, Homework 2

Assigned: Wednesday, October 6, 2010

Do the following problems, and turn them in by the beginning of class on Wednesday, October 13, 2010. There are 2 problems.

- 1. For each of the following rings, determine whether or not it is a Dedekind domain. (Obviously, explain your reasoning.)
 - (a) The polynomial ring k[x, y] in two variables, where k is a field.
 - (b) The ring \mathbf{Z}_p of *p*-adic integers.
 - (c) The noncommutative (!) ring $M_2(\mathbf{Z})$ of 2×2 integer matrices.
 - (d) The ring $\overline{\mathbf{Z}}$ of all algebraic integers.
 - (e) The field $\overline{\mathbf{Q}}$ of all algebraic numbers.
 - (f) The ring $\mathbf{Z}[\sqrt{3}]$.
 - (g) The ring $\mathbf{Z}[\sqrt{5}]$.
 - (h) The affine coordinate ring $\mathbf{C}[x,y]/(y^2-x^3)$ of a cuspidal cubic over the complex numbers.
 - (i) The ring Z[¹/₂] of rational numbers whose denominator is a power of 2.
 - (j) The ring $\mathbf{Z}[\sqrt{2}, \sqrt{3}, \sqrt{5}, \sqrt{7}, \sqrt{11}, \ldots]$ generated by the square roots of all prime numbers.
 - (k) The quotient ring $\mathbf{Z}[x]/(x^2)$, which is a ring with an element whose square is 0.
 - (l) The quotient ring $\mathbf{Z}[x]/(x^2-1)$.
 - (m) The direct sum $\mathbf{Z} \oplus \mathbf{Z}$, so the direct sum of two copies of \mathbf{Z} .
 - (n) Any finite integral domain.
- 2. Let K be a quadratic field (i.e., a number field of degree 2) and let $\alpha \in K$. If $\operatorname{Norm}_{K/\mathbf{Q}}(\alpha) \in \mathbf{Z}$ and $\operatorname{Tr}_{K/\mathbf{Q}}(\alpha) \in \mathbf{Z}$, does it necessarily follow that $\alpha \in \mathcal{O}_K$? What if K has degree 3 instead of 2?