Math 581b, Fall 2010, Homework 1

September 29, 2010

Do the following problems, and turn them in by the beginning of class on Wednesday, October 6, 2010. There are 5 problems.

1. Prove as directly as you can that if $K=\mathbf{Q}(\sqrt{-1})$, then $\mathcal{O}_{K}=\mathbf{Z}[\sqrt{-1}]$.
2. (a) Compute - in any way - the minimal polynomial of the algebraic number $\sqrt{2}+\sqrt{3}+\sqrt{5}$. Using a computer is allowed (show how), though not essential.
(b) The minimal polynomial of $\sqrt{p_{1}}+\sqrt{p_{2}}+\sqrt{p_{3}}+\cdots+\sqrt{p_{n}}$, where p_{i} is the i th prime, is called the nth Swinnerton-Dyer polynomial. Is every Swinnerton-Dyer polynomial a monic polynomial in $\mathbf{Z}[x]$?
3. Suppose \mathcal{O}_{K} is the ring of integers of a number field K and $\beta \in \overline{\mathbf{Q}}$ is a root of a monic polynomial $f(x) \in \mathcal{O}_{K}[x]$. Prove that β is an algebraic integer, i.e., β is a root of some monic integral polynomial $g(x) \in \mathbf{Z}[x]$.
4. Is the following number an algebraic integer (i.e., the root of a monic integral polynomial in $\mathbf{Z}[x])$?

$$
\sqrt[20001]{\sqrt[5]{7}+8}+\sqrt[2010]{\sqrt[7]{3}+\sqrt{2}}+1
$$

5. (a) Is every prime ideal of the ring $\mathbf{Z}[X]$ of polynomials over \mathbf{Z} maximal?
(b) Prove that in the following four rings every nonzero prime ideal is maximal (hence each ring has "Krull dimension 1"):

$$
\mathbf{Z}, \quad \mathbf{Q}[X], \quad \mathbf{Z}[\sqrt{-1}], \quad \mathbf{Q}[X, Y] /\left(Y^{2}-X^{3}-1\right)
$$

