Math 581b, Fall 2010, Homework 1

September 29, 2010

Do the following problems, and turn them in by the beginning of class on Wednesday, October 6, 2010. There are 5 problems.

- 1. Prove as directly as you can that if $K = \mathbf{Q}(\sqrt{-1})$, then $\mathcal{O}_K = \mathbf{Z}[\sqrt{-1}]$.
- 2. (a) Compute—in any way—the minimal polynomial of the algebraic number $\sqrt{2} + \sqrt{3} + \sqrt{5}$. Using a computer is allowed (show how), though not essential.
 - (b) The minimal polynomial of $\sqrt{p_1} + \sqrt{p_2} + \sqrt{p_3} + \dots + \sqrt{p_n}$, where p_i is the *i*th prime, is called the *n*th Swinnerton-Dyer polynomial. Is every Swinnerton-Dyer polynomial a monic polynomial in $\mathbf{Z}[x]$?
- 3. Suppose \mathcal{O}_K is the ring of integers of a number field K and $\beta \in \overline{\mathbf{Q}}$ is a root of a monic polynomial $f(x) \in \mathcal{O}_K[x]$. Prove that β is an algebraic integer, i.e., β is a root of some monic integral polynomial $g(x) \in \mathbf{Z}[x]$.
- 4. Is the following number an algebraic integer (i.e., the root of a monic integral polynomial in $\mathbf{Z}[x]$)?

$$\sqrt[20001]{\sqrt[5]{7}+8} + \sqrt[2010]{\sqrt[7]{3}+\sqrt{2}} + 1$$

- 5. (a) Is every prime ideal of the ring $\mathbf{Z}[X]$ of polynomials over \mathbf{Z} maximal?
 - (b) Prove that in the following four rings every nonzero prime ideal is maximal (hence each ring has "Krull dimension 1"):

Z, **Q**[X], **Z**[$\sqrt{-1}$], **Q**[X,Y]/(Y² - X³ - 1).