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Abstract

This paper explores the structure of Elliptic Curves over C and equivalence classification
under homothetic complex latticeswith the intent to show that tori are elliptic curves. The
paper will give an overview of advanced results contributing to understanding of the topic.
Although the results will attempt to be self-contained, a background in Complex Analysis
will greatly contribute to comprehending the the subject matter, refer to Gamelin [1] for
such an introduction. The paper is mainly based on the discussions given in Knapp [2] and
Washington [5] with Husemöller [4] and [3] as an external reference.

For a given complex lattice Λ = {n1w1 + n2w2 : wi ∈ C , ni ∈ Z } where w1 and w2 are
linearly independent in R , we can define a doubly periodic or Elliptic Function f : C → C
such that f (z + w) = f (z) for all z ∈ C and w ∈ Λ. Topologically, a Torus can be identified by
a parallelogram with opposite sides identified, and hence follows the equivalence of Λ with
a torus. After exploring general useful complex analytic properties of lattices and Elliptic
functions we introduce a non-trivial Elliptic Function, the Weierstrass ℘ -function over a
give lattice Λ. Then we sketch the proof that the set of Elliptic Functions for lattice Λ is
C (℘, ℘′), that is, a complex rational function of ℘ and ℘′.

Next we show that a given lattice Λ generates an Elliptic Curve over C . The equation of
an elliptic curve falls out of deriving a differential equation with respect to ℘, ℘′, and Gk, the
Einstein series with k = 4, 6, from the Laurent series expansions of these quantities and then
proving the map ϕ : C /Λ → E(C ) sending z 7→ (℘(z), ℘′(z)) and 0 7→ ∞ is indeed a group
isomorphism.

The converse, to show that a non-singular Elliptic Curve can be associated to a C -lattice
Λ unique under homothetic equivalence, is much more tricky. There are two general ap-
proaches to prove the equivalence, one hinges on defining a special j-function invariant and
proving useful relations amongst complex lattices. The other combines Riemannn surfaces,
Γ functions, and winding numbers into proving a biholomorphic map. Theoretically we will
state the results of the first approach but ignore the complicated details. Computationally,
finding generators for a lattice Λ given an elliptic curve E reduces to computing an elliptic
integral using the Gauss Arithmetic Geometric Mean. We will outline this derivation and
then end with a computation of a lattice given a particular elliptic curve.
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1 Lattices and Elliptic Functions

1.1 Lattices over C

Let w1,w2 ∈ C such that w1 , λw2 for any λ ∈ R , we say w1 and w2 are linearly independent in
R . Then we define the complex lattice Λ generated by w1 and w2 as

Λ = Z w1 + Z w2 = {n1w1 + n2w2 : n1, n2 ∈ Z }.

We define Π the fundamental parallelogram of Λ by

Π = {a1w1 + a2w2 : 0 ≤ ai < 1, i = 1, 2}.

We can generate the lattice Λ by simply translating the verticies of Π in any integral linear com-
bination of w1 and w2.

1.2 Equivalence of Torus and C /Λ

As a revealing diversion, it is straightforward to show the topological equivalence under home-
omorphism of a Torus and C /Λ, the space of complex numbers modded out by a lattice Λ.
We can think of the fundamental parallelogram Π as a representative of the set C /Λ, since
C /Λ = {z : z ≡ z′ if and only if z′ = z + n1w1 + n2w2, n1, n2 ∈ Z }. Hence using Π as a represen-
tative of C /Λ, we can identify the aw1 edge with the w2 + aw2 edge and likewise the bw2 edge
with the w1 + bw2 edge where 0 ≤ a, b < 1. And hence with a sequence of gluings we get the
following derivation of a torus from C /Λ, that is, C /Λ→ Π→ cylinder C → torus T 2.

Figure 1: Identifying a Lattice to a Torus via transformations: Lattice→ Fundamental Parallelo-
gram→ Cylinder→ Torus
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1.3 Elliptic Functions

An Elliptic Function, or double periodic function, over a complex lattice Λ is a complex analytic
(continuous in the complex sense) function f : C → C ∗ (where C ∗ = C ∪ ∞) such that
f (z + w) = f (z) for any z ∈ C and w ∈ Λ. It follows that f (z + w1) = f (z + w2) = f (z), and we
call w1,w2 the periods. of f .

If f . 0, i.e identified to be zero, then since f is analytic we can write f as a Laurent series
expansion around z w ∈ Λ as

f (z) = ar(z − w)r + ar+1(z − w)r+1 + · · ·

with ar , 0. We define the order of f at w as ordw f = r and the residue of f at w as Resw f = a−1.
It’s clear that since f is doubly periodic, Resw+w f = Resw f and likewise ordw+w f = ordw f .

Theorem: 1 Let f be an elliptic function for the lattice Λ and let Π be a fundamental parallelo-
gram for Λ.

1. If f has no poles, then f is constant.

2.
∑

w∈Π Resw f = 0.

3. If f is not identically 0, that is
∑
w∈Π

w · ordw f = 0

4. If f is not constant then f : C → C ∪ ∞ is surjective. If n is the sum of the orders of the
poles of f in Π and z0 ∈ C , then f (z) = z0 has n solutions (counting multiplicities).

5. If f has only one pole in Π, then this pole cannot be a simple pole.

Where all of the above sums over w ∈ Π have finitely many nonzero terms.

Proo f . is given in Washington [5] p259. By definition f has a pole at z0, if limz→z0 f (z) = ±∞

( this implies the Laurent series of f (as above) has negative order around z = z0. Statement (1)
stems from the analyticity of f , and the fact an analytic function and the general statement that
an analytic function can only have finitely many zeros and poles in any compact. This implies f
is bounded on any Π and hence all of C andby Liouville’s theorem, a bounded entire function is
constant, proving (1).

Statement (2) and (3) proven using some clever line integrals and Residue calculations. Statement
(4) is proven by considering h(z) = f (z) − z0, a doubly periodic function with poles the same as
f . Statemetn (5) is simple, suppose f ahs only a simple pole, sat at w , and no others. Then
Resw f , 0 (otherwise, the pole doesn’t exist). Thus the sum in the second statement only has on
nonzero term, a contradiction. Hence there are no other poles, or a simple pole, meaning a pole
of single order. �
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1.4 The Weierstrass ℘-function

A non-trival example of an Elliptic Function is the Weierstrass ℘-function. Given a lattice Λ we
define the Weierstrass ℘-function by

℘(z) = ℘(z; Λ) =
1
z2 +

∑
w∈L {0}

(
1

(z − w)2 −
1

w2

)
.

Figure 2: Various angles of a plot in Mathematica of a ℘-function on a lattice Λ generated by
complex number w1 = 1 + i and w2 = 1 + 2i. Notice the periodicity of the function and poles.

Theorem: 2 The ℘ function satisfies the following properties:

1. ℘(z) is well defined in the sense that the sum converges absolutely and uniformly on com-
pact sets Ω such that Ω ∩ Λ = ∅.

2. ℘(z) is meromorphic in C and has a double pole at each w ∈ Λ.

3. ℘(−z) = ℘(z) for all z ∈ C .

4. ℘(z + w) = ℘(z) for all w ∈ Λ.

5. The set of elliptic periodic function for Λ if C (℘, ℘′). In other words the every elliptic
function is a rational function of ℘ and its derivative ℘′.

I will just sketch the proofs. For (1) it is convenient to prove the following lemma.

Lemma: If k > 2 then the following converges,∑
w∈Λ/{0}

1
|w|k

.

6
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where the sum converges over the entire lattice Λ. The convergence of the series is proven
using an integral comparison test and estimates on the diagonal of the fundamental parallelogram
Π. Then the absolute and uniform convergence is a consequence of another estimate and the
exclusion of finitely many terms.

(2) is proven using the complex analytic fact a uniform limit of analytic functions is analytic,
℘(z) is analytic for z < Λ. If z ∈ Λ then the sum of terms for w , z is analytic near z, so the term
1/(z − w)2 forces ℘ to have a double pole at z, hence (2).

(3) is fairly straightforward. If w ∈ Λ then it is also true that −w ∈ Λ by multiplying by −1,
hence, in the sum for ℘(−z) we can sum over −w ∈ Λ, hence the terms are in the form

1
(−z + w)2 −

1
(−2)2 =

1
(z − w)2 −

1
w2

hence not changing the sum, hence ℘(−z) = ℘(z).

The proof of (4), we differenitate and conclude

℘′(z) = −2
∑
w∈L

1
(z − w)3 .

The sum converges uniformly and absolutely by the lemma with simple comparison to 1
|w|3 . When

z < w, then swapping z ↔ z + w only shifts terms, hence ℘′(z + w) = ℘′(z). By calculus, this
implies there exists a constant cw such that ℘(z + w) − ℘(z) = cw for all z < L. Letting z = w

2 we
have cw = ℘(−w/2) − ℘(w/2) = ℘(w/2) − ℘(w/2) = 0, thus ℘(z + w) = ℘(z).

Husemöller [4] gives a very slick proof of part (5) which i reproduce below. First, we write every
elliptic function f (z) as the sum of an even and odd elliptic function

f (z) =
f (z) + f (−z)

2
+

f (z) − f (−z)
2

.

Using the derivative computed above for ℘′(z) = −2
∑

w∈L
1

(z−w)3 , then ℘′(z) times an odd elliptic
function is an even elliptic function. Hence it suffices to show that C (℘(z)) is the field of even
elliptic functions. If f (z) is even, then ord0 f (z) = 2m is even and f (z) = ℘(z)−mg(z), where
elliptic g(z) is even with no zeros or poles on Λ. If a is a zero of ℘(z) − c = 0 then so is w − a for
all w ∈ L and if a is zero or a pole of g(z) then so is w − a. If 2a ∈ L, then the zero (or pole) is of
order at least 2 since g′(−z) = −g′(z) and so g′(a) = g′(−a) = −g′(a), thus

g(z) = c ·
∏

i(℘(z) − ℘(ai))∏
i(℘(z) − ℘(bi))

where {ai,w − ai} are zeros of g(z) and {bi,w − bi} are the poles of g(z) in a fixed fundamental
domain, Π∗. Hence proving the theorem. �

2 C /Λ→ E(C ): Tori are Elliptic Curves

In this section we show that given a complex lattice Λ we can generate an elliptic curve E(C ).
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2.1 Einstein Series

On a lattice Λ, for an integer k ≥ 3 we define the Einstein series

Gk = Gk(Λ) =
∑

w∈Λ/{0}

w−k.

Notice this series converges by the lemma proved in the ℘-function section. Note that when 2k+1
is odd, then G2k+1 = 0 since terms of w and −w cancel out!

Proposition: For 0 < |z| < min(|w|) such that 0 , w ∈ Λ then

℘(z) =
1
z2 +

∞∑
j=1

(2 j + 1)G2 j+2z2 j.

Proo f . Notice

1
(z − w)2 −

1
w2 = w−2

(
1

(1 − (z/w))2 − 1
)

= w−2

 ∞∑
n=1

(n + 1)
zn

wn

 .
Thus

℘(z) =
1
z2 +

∑
w,0

∞∑
n=1

(n + 1)
zn

wn+2 .

which yields the result after taking the double sum over w then n.

2.2 The Elliptic Curve Differential Equation

Theorem: 3 Let ℘(z) be the Wierstrass ℘-function for a lattice Λ, then

℘′(z)2 = 4℘(z)3 − 60Gr℘(z) − 140G6.

Proo f . We use the series expansions of ℘ and ℘′ from the previous proposition, we see

℘(z) = z−2 + 3G4z2 + 5G6z4 + 7g8z6 + O(z7)

℘′(z) = −2z−3 + 6G4z + 20G6z3 + 42G8z5 + O(z4),

and taking the cube and the square we have

℘(z)3 = z−6 + 9G4z−2 + 15G6 + (21G8 + 27G2
4)z2 + O(z4)

℘′(z)2 = 4z−6 − 24G4z−2 − 80G6 + (36G2
4 − 168)z2 + O(z4).

hence, we let f (z) be defined as follows,

f (z) = ℘′(z)2 − 4℘(z)3 + 60G4℘(z) + 140G6 = O(z3).

8
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Thank Knapp [2] for the slick proof idea. Notice that left side of higher order terms have no poles
nor a constant term, hence since f is an elliptic function (as a polynomial of ℘(z) and ℘′(z)) by
the Theorem in the Elliptic Function section, f (z) ≡ 0. �

Now making the substitutions g2 = 60G4, g3 = 140G6 we have

℘′(z)2 = 4℘(z)3 = g2℘(z) − g3.

Proposition: The discriminant ∆ = 16(g3
2 − 27g3) , 0.

Proo f . Since ℘′(z) is doubly periodic, ℘′(wi/2) = ℘′(−wi/2), since ℘′(−z) = −℘′(z) it follows
℘′(wi/2) = 0 for i = 1, 2, 3. Hence each ℘(wi/2) is a root of 4x3 − g2x − g3. Showing that
these roots are distinct proves the discriminate is nonzero. Letting hi(z) = ℘(z) − ℘(wi/2). Since
hi(wi/2) = 0 = h′i(wi/2), then hi vanishes to order at least 2 at wi/2. Since hi(z) has only one
pole in Π, the double pole at z = 0, then Theorem 1 part (5) implies that wi/2 is the only zero of
hi(z), so hi(w j/2) , 0 when j , i hence the values of ℘(wi/2) are distinct and the discriminant is
non-zero. �

Hence making the substitution (x, y) = (℘(z), ℘′(z)) we get a non-singular elliptic curve

y2 = 4x3 − g2x − g3.

As discussed in Knapp [2] and Koblitz [3], letting w = ℘(z), the cubic polynomial 4w3 − g2w− g3

factors into
4w3 − g2w − g3 = 4(w − e1)(w − e2)(w − e3)

where e1 = ℘(w1/2), e2 = ℘(w2/2), and e3 = ℘((w1 + w2)/2). The factorization hence proves the
non-singularity of E : y2 = 4x3 − g2x − g3 since the factors are unique.

2.3 C /Λ and E(C ) are Isomorphic

Using our nice looking formula, we now need to prove the highly non-trivial but intuitively
promising isomorphism.

Theorem: 4 Let Λ be a lattice on C and E be the elliptic curve y2 = 4x3 − g2x − g3. Then the
map ϕ defined by

ϕ : C /L→ E(C )
z→ (℘(z), ℘′(z))
0→ ∞

is a group isomorphism under addition “modulo Λ” in C /Λ = and standard elliptic curve opera-
tions in E(C ).

Proo f S ketch. Surjectivity and Injectivity are fairly easy (basically from Washington [5]). Take
(x, y) ∈ E(C ). Since ℘(z)− x has a double pole, Theorem 1 implies it has zeros, hence there exists

9
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z ∈ C such that ℘(z) = x. The elliptic equation in Theorem 3 implies that ℘′(x)2 = y2, so
℘′(z) = ±y. If ℘′(z) = y we are done. If ℘′(z) = −y, then by the evenness formula in Theorem 2
on the ℘ function, ℘′(−z) = y and ℘(−z) = x, so −z 7→ (x, y), hence ϕ is onto.

For Injectiviy suppose ℘(z1) = ℘(z2) and ℘′(z1) = ℘′(z2), and z1 . z2 (mod Λ). The only poles
of ℘(z) are for z ∈ Λ. Thus if z1 is a pole of ℘, then z1 ∈ Λ and z2 ∈ Λ implies z1 ≡ z2

(mod Λ). Now suppose z1 is not a pole of ℘, i.e., z1 < Λ. Then ℘(z) − ℘(z1) has a double
pole at z = 0 and no other poles in Π. By Theorem 1, h(z) has exactly two zeros. Suppose
z1 = wi/2 for some i. From the proof of the discriminant we know that ℘′(wi/2) = 0 so z1 is a
double root of h(z) hence the only root. Thus z2 = z1. Suppose z1 is not of the form wi/2. Since
h(−z1) = h(z1) = 0 and since z1 . −z2 (mod Λ), two zeros of h are z1 and z2 ≡ −z1 (mod Λ).
But y = ℘′(z2) = ℘′(−z1) = −℘′(z1) = −y. Hence ℘′(z1) = y = 0. But ℘′(z) has only a triple pole,
thus has only three zeros in Π. But from the discriminent proof, we know that these zeros occur
at wi/2, hence a contradiction since z , wi/2. Thus z1 ≡ z2 (mod Λ) and ϕ is injective.

Proving ϕ is a homomorphism is much more tricky. Knapp [2] approaches the proof quite
abstractly and complex algebraically. He proves the continuity of the inverse map f (z1, z2) =

ϕ−1(ϕ(z1) + ϕ(z2)) (mod Λ) and then proves the general result that an analytic map f : C /Λ ×
C /Λ → C /Λ can be expressed as f (z1, z2) ≡ az1 + bz2 + c (mod Λ) for all z1, z2 ∈ C . Then he
derives that a = b = 1, c = 0 and hence f (z1, z2) = z1 + z2 hence ϕ(z1 + z2) = ϕ(z1) + ϕ(z2).

Washington [5] approaches the problem by algebraically proving for each coordinate using some
complicated analytic and algebraic techniques.

As Knapp [2] points out, if we didn’t know that E(C ) was associative, then proving that ϕ is a
group isomorphism would in fact prove the associativity of rational points on an Elliptic Curve
since Q ⊂ C . Supposedly this was Poincare’s approach. �

Notice after proving this isomorphism, then a corollary is every Torus generates an Elliptic curve,
as given by the equation given in Theorem 4!

3 E(C )→ C /Λ: Elliptic Curves come from a Torus

In this section we outline that every elliptic curve over C comes from a torus. That is, given an
elliptic curve E(C ), then we can produce a lattice Λ unique up to some homothetic equivalence.
The subject is full of “deep” theorems in the sense that the proofs are long, complicated, and
involved (that is more than a page), hence I will mostly be stating results.

3.1 Homothetic Lattices

Let Λ = Zw1 +Zw2 be a lattice in C . We define τ = w1
w2

. Since w1 and w2 are linearly independent
over R , τ cannot be real. Hence, by switching w1 and w2 if necessary, we can assume the

10
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imaginary part =(τ) > 0, i.e., τ lies in the upper half plainH = {x + iy ∈ C : y > 0}. Now if we
let Λτ = Z τ + Z , then Λ is homothetic to Λτ, that is

Λ = λΛτ

for some λ ∈ C . In this case λ = w2.

Now the main result of this section is,

Theorem: 5 Let y2 = 4x3 − Ax + b define an elliptic curve E over C . Then there exists a lattice
Λ such that g2(Λ) = A and g3(Λ) = B and there is an isomorphism of groups C /Λ � E(C ).

Here the elements of Λ are called the periods of Λ. Moreover this existence is a homothetic
equivalence, that is, if we find Λ that works, then any Λ′ = λΛ for λ ∈ C will suffice. There are
two general approaches to proving the statement.

3.2 The j-function

This ironically named function (based on it’s definition) which classifies elliptic curves under
isomorphism, that is two elliptic curves E and E′ overC are isomorphic if and only if j(E) = j(E′)
[4]. The j function is defined as

1728(τ) = 1728
g3

2

g3
2 − 27g2

3

or in long ridiculous computational form

j(τ) = 1728

(
1 + 240

∑∞
j=1

j3q j

1−q j

)3

(
1 + 240

∑∞
j=1

j3q j

1−q j

)3
−

(
1 + 504

∑∞
j=1

j5q j

1−q j

)2

where q = ewπiτ with τ defined as above.

Studying j-functions[5], a few results follow that are used in the proof of the main equivalence
statement of the section, Theorem 5.

Proposition: If Λ1 and Λ2 are lattices in C . Then j(Λ1) = j(Λ2) if and only if there exists
0 , λ ∈ C such that λΛ1 = Λ2.

Proposition: Let τ1, τ2 ∈ H , then j(τ1) = j(τ2) if and only if there exists
( a b

c d
)
∈ S Lw(Z ) (the

group of invertible matrices in the integers) such that

aτ1 + b
cτ1 + d

= τ2.

11
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3.3 Elliptic Integrals

3.3.1 Definition

Finally, another approach to the inverse problem is given an Elliptic curve E, simply directly
compute periods w1 and w2 of some lattice. We do this by transforming the ℘-function differential
equation into an elliptic integral. Letting x = ℘(z) we attempt to find the inverse x = f (w). Using
the factorization of the elliptic differential equation, we have the following transformation, with
e1 < e2 < e3 [5][2] (

dw
dz

)2

= 4(x − e1)(x − e2)(x − e3)

dz =
dw

2
√

(x − e1)(x − e2)(x − e3)

z(w) =

∫ ∞

e3

dx
2
√

(x − e1)(x − e2)(x − e3)

with the change of variables x = ℘(z), then the denominator becomes
√
℘′(z)2 = −℘′(z) and the

limits transform to z = w2/2 to 0. So we have (with a direction reverse)∫ w2/2

0
dz =

w2

2
.

Hence
w2 =

∫ ∞

e3

dx
√

(x − e1)(x − e2)(x − e3)
which with the highly nontrivial change of coordinates

x =
(e3 −

√
(e3 − e1)(e3 − e2))t + (e3 +

√
(e3 − e1)(e3 − e2)

t + 1
k =

√
e3 − e1 −

√
e3 − e2

√
e3 − e2 +

√
e3 − e2

we get

w2 =
2

√
e3 − e1 +

√
e3 − e2

∫ 1

−1

dt√
(1 − t2)(1 − k2t2)

and taking advantage of the evenness of the integral

w2 =
4

√
e3 − e1 +

√
e3 − e2

∫ 1

0

dt√
(1 − t2)(1 − k2t2)

.

Similarly we find

w1 =
2i

√
e3 − e1 +

√
e3 − e2

∫ 1/k

1

dt√
(t2 − 1)(1 − k2t2)

12
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and with the substitutions k′ =
√

1 − k2 and t = (1 − k′2u2)−1/2 we have

w1 =
2i

√
e3 − e1 +

√
e3 − e2

∫ 1/k

1

dt√
(1 − t2)(1 −′ k2t2)

.

Now, we define the Elliptic Integral as follows

K(k) =

∫ 1

0

dt√
(1 − t2)(1 − k2t2)

and hence our periods become

w1 =
2i

√
e3 − e1 +

√
e3 − e2

K(
√

1 − k2) w2 =
4

√
e3 − e1 +

√
e3 − e2

K(k).

3.3.2 Gauss Arithmetic Geometric Mean

The Gauss Arithmetic-Geometric Mean (AMGM for short) can be thought of as a formal
combination of the two means. Beginning with two positive real number a, b ∈ R we define an

and bn by

a0 = a, b0 = b

an =
1
2

(an−1 + bn−1)

bn =
√

an−1bn−1

Proposition: the main result of the AMGM . Suppose a ≥ b > 0, then

bn−1 ≤ bn ≤ an ≤ an−1,

0 ≤ an − bn ≤
1
2

(an−1 − bn−1).

Thus
M(a, b) = lim

n→∞
an = lim

n→∞
bn

exists and if b ≥ 1 then for all n ≥ 0,

an+m − bn+m ≤ 8
(
an − bn

8

)2m

.

Proo f . From the fact that an ≥ bn it follows from the basic equality

an − bn =
1
2

(
√

an−1 −
√

bn−1)2 ≥ 0.

13
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From the definition of an, since an−1 ≥ bn−1 then

an ≤
1
2

(an−1 + an−1) = an−1 and bn =
√

bn−1bn−1 = bn−1.

Also,

an − bn =
1
2

(
√

an−1 −
√

bn−1)2 ≤
1
2

(
√

an−1 −
√

bn−1)(
√

an−1 +
√

bn−1) =
1
2

(an−1 − bn−1).

Therefore, an − bn ≤ (1/2)n(a − b), so an − bn → 0 as n → ∞. Since the an’s are decreasing and
bounded below by the increasing sequence o bn’s it follows that the two sequences converge to
the same limit, thus M(a, b) exists. If bn−1 ≥ 1 then

√
an−1 +

√
bn−1 ≥ 2, so

an − bn

8
=

1
16

(√
an−1 −

√
bn−1

)2
≤ f 116

(√
an−1 −

√
bn−1

)2 (
√

an−1 +
√

bn−1)2

4
=

(
an−1 − bn−1

8

)2

.

and hence the final inequality follows by induction. �

An interesting application of the AMGM occurs in the next section.

3.3.3 Computing Periods w1 and w2

The main computational result is as follows:

Theorem: 6 Suppose E is given by

y2 = rx3 − g2x − g3 = 2(x − e1)(x − e2)(x − e3)

with real numbers e1 < e2 < e3. Then Z w1 + Z w2 is a lattice for E, where

w1 =
πi

M(
√

e3 − e1,
√

e2 − e1)

w2 =
π

M(
√

e3 − e1,
√

e2 − e1)

Proo f . Sketch: The use of the AMGM in the calculation was, of course, first discovered by
Gauss. If we define the following Elliptic Integral

I(a, b) =

∫ π/2

0

dθ√
a2 cos2 θ + b2 sin2 θ

then it can be shown with a trig substitution, u = b tan θ that and taking limits that

I
(
a + b

2
,
√

ab
)

= I(a, b) I(a, b) =
π/2

M(a, b)
.

Moreover, it is easily seen (with the substitution t = sin θ) that the elliptic integral defined above
can be written as

K(k) = I(1,
√

1 − k2) = I(1 + k, 1 − k).

which can be easily put these facts together with previous formulas for w1 and w2 to complete the
proof sketch.
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4 Conclusion

Considering the importance, interest, and prominence of Elliptic Curves in Number Theory, I find
the connections between elliptic curves and tori, complex lattices, and the ℘-function a enlight-
ening curiosity. I also see the practicality and existence of the AMGM as a tool for computing
Elliptic Integrals and periods a real numerical treat. In the future I wish to consider giving more
concrete examples of calculations on interesting elliptic curves, and seeing how elliptic curve
periods relate to interesting properties of the curves.
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