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Abstract

Modular forms arise in primarily in algebra and number theory; as is well known, algebra and number
theory are intricately interwoven. It is well known that algebra and number theory arise often in the
natural world; likewise for modular forms, whose base is in both algebra and number theory. Elliptic

curves arise in both algebra and number theory, and are tightly connected with modular forms. My goal
will be to develop most of the necessary content related to modular forms to sketch the motivating
observation behind the Monstrous Moonshine conjecture. The actual conjecture involves module

theory and representation theory, which are both rather out of the scope of this project.



Introduction

As noted in the abstract, the end motivation here, in simple, is to develop the
definitions needed to actually understand the very peculiar key observation that brought about
“moonshine” theory, a recent development interweaving number theory, algebra, and to a
lesser extent, physics. By taking this admittedly very shallow approach to introducing modular
forms, it is sure that a large portion of their depth will be lost; as an undergraduate research
project, this is nearly bound to happen regardless, as many needed ideas are in the toolboxes of
graduate algebra. That is the downside of what I’ll be presenting here. The upshot is that it will
be an undergraduate-accessible introduction to these topics, and a small glimpse into the
motivation of the Monstrous Moonshine theory and conjectures.

Lattices

The lattice is a tremendously important tool; for starters, modular forms can be viewed
as analytic functions on lattices in the complex plane. This will give us a simple definition to
begin looking at modular forms with. A lattice in the complex plane is completely defined by
two points in the plane with a non-real ratio:, , ∈ ; = ∈= ( , ) = { + : , ∈ }
where is the upper half plane, is the complex plane, and in a shocking twist of events, we
call the integers . This pair of points, the basis of the lattice, can be thought of as a pair of
vectors in . If the ratio of the two points is real, than equivalently the pair of vectors in is
collinear, and will generate a boring lattice. Below are several examples of lattices, (1 + , 4 +) and (2 + , 1 + 3 ), plotted in Sage. The two generating points, and are red and the
other lattice points are blue.
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It is worth noting that if one of the basis points is in the lower half plane, it can be
“shifted” to the upper half plane by an addition of an integer multiple of the other basis point,
and doing this yields a basis that generates the same lattice. For simplicity’s sake, we’ll only use
bases with both points in the upper half plane. Additionally, the lattice base does not have to
be integer; integer bases were chosen for ease of visualization/calculation.

A function : → is simply a complex function restricted to the given set of lattice
points; for example, taking the trivial lattice of Gaussian integers, = (1, ), ( ) is simply the
range of when evaluated at integer points in . An important concept is the homogeneous
function: : → is homogeneous of degree –k, if:( ) = ( ); ∈ , ∈
Examples:

1. = 0: ( ) = ( )
2. = 1: ( ) = ( )
3. = 2: ( ) = ( )
It is worth noting that in these examples, that by intuition there seems to be a periodicity of

some sort. Unfortunately a straight-up “normal” periodicity, as observed with sine or cosine, or
any other similar function, only appears in a special case where = 0; the other cases are this
peculiar “scaling” sort of periodicity.

The set of homogenous functions of degree –k is in direct bijective correspondence with the
set of modular forms of weight k; the proof is in Lang’s text, and will not be copied here. This
simply gives an additional context for modular forms to be viewed in, which plays a key role
later in the more detailed development of modular forms omitted in this paper.

The Modular Group

The modular group is a name for the group of invertible integer matrices,
otherwise known as ( ). Each element of the modular group is assigned to a function, a
Linear Fractional Transformation, and operates on the upper half plane as follows:

∈ ; = ∈ ( )( ) = ++
The proof that ∈ ⇒ ( ) ∈ , i.e. that the modular group maps the upper half plane to

itself, is an elementary calculation; the only significant step is the clearing of complex numbers
from the denominator of ( ), and this is done by multiplying the numerator and denominator



by the complex conjugate of the denominator. The modular group is generated by two
elements, and : = 1 10 1 ; ( ) = + 1= 0 −11 0 ; ( ) = − 1
The proof of this fact is a somewhat involved calculation but does not provide much deep
insight, and so is omitted.

Some Complex Analysis Terminology

 A complex function is holomorphic if it is complex-differentiable (similar to
differentiability of a function from to ) on some neighborhood of every point in its
domain.

 Meromorphicity is a very slightly generalized version of holomorphicity. A function with
isolated poles, which is holomorphic everywhere except at those poles, is called
“meromorphic.”

A nice intuitive geometry way to think of a meromorphic function is as the top of an old style
camping tent; generally speaking, it’s a nice and smooth surface except for where the tent
poles poke the material up. Those points aren’t too nice, but they are well isolated.

Weak Modularity

A meromorphic function : → is considered weakly modular of weight k if the
following condition holds: ( ) ( + ) = ( ), ( ) =
where is an element of the modular group and is an element of the upper half plane.
Because the modular group is generated by the afore mentioned two elements and , we
can check if any function is weakly modular of some weight by checking these two inequalities,
which come from plugging and into our definition:

1. ( ) = + 1: ( ) = ( + 1)
2. ( ) = − : ( ) = −
There are several important facts we can observe.
1. For all weights:

a. ( ) is -periodic, i.e. it repeats itself on a unit interval: ( ) = ( + ) for
any integer . This can be proven by a trivial application of induction to (1).



b. The zeroes and poles of ( ) are invariant under operation by ( ) on . This
follows by comparing the right and left hand sides of the definition above: clearly
the factor ( + ) will not have zeroes or poles, so ( ) has zeroes and/or
poles if corresponding exactly to those of ( ) .

2. For weight = 0, ( ) is invariant under the modular group, ( ). This follows from
setting = 0 in equation (2).

3. For any odd weight ( ) ≡ 0. We can see this by setting = − in the definition. This
gives us ( )(−1) = ( ), clearly only true when ( ) ≡ 0.

4. For weight = 2, we get a result familiar from path integrals of complex analysis. There
is a bit of legwork to do to see this result, however.

a. First we manipulate our definition to get that
( )( ) = ( )

b. Next, we note that ( ) ; this derivative can be calculated easily using

the quotient rule and the definition of ( ).
c. Finally, equating the right hand sides of the two equations and redistributing the

fractions, we have ( ) ( ) = ( ) , and so a path integral in the
complex plane is invariant under ( ).

Modular Forms

A function : → is called a modular form of weight k if the following conditions
satisfied:

1. is holomorphic on
2. is holomorphic “at infinity”
3. is weakly modular of weight k

For a function ( ) to be holomorphic “at infinity” simply means that it must be
bounded as ( ) → ∞. An easy way to show this would be by showing that lim ( )→ ( )
exists and is finite. This condition is necessary for some further results on the set of all modular
forms of some given weight; this set is denoted ( ( )).

An important example of specific type of modular form is the cusp form of weight k, a
modular form of weight k, with the addition that in its Fourier expansion, the first terms
coefficient is zero. ( ) = , =( ) a cusp form ⇒ = 0
Also, from this definition we also have that a modular form is a cusp form whenlim ( )→ ( ) = 0. The significance of cusp forms to this work will be in defining a very



important modular form in terms of them; this function plays a key role in the question that
motivated the moonshine conjectures.

Eisenstein Series

An Eisenstein series is essentially a 2-dimensional analog of the Riemann zeta function.
In good tradition (and it also happens to be the generally accepted standard definition), we first
use a definition that looks just like Riemann’s original definition (this definition and it’s
immediate corollaries are directly from Diamond and Shurman).

( ) = 1( + )( , )∈ ;
∈∈= − {(0,0)}

is absolutely convergent ∀ and uniformly convergent on compact subsets of . By
definition than, is holomorphic on . By applying an arbitrary element of ( ) to and
using some tricky manipulation of the summation of ( ( )), it falls out that is weakly
modular with weight . Lastly, is bounded as ( ) → ∞, so it is indeed a modular form.

We now define two important cusp forms. They do seem entirely arbitrary, and neither
their purpose nor significance readily meets the eye. This is understandable, considering that
they are part of a much more complicated thing, the Weierstrass -function: they are the 2nd

and 3rd coefficients of its Laurent expansion. The -function won’t be discussed here, although
it is part of Koblitz’s presentation of elliptic curves, and can be studied in full depth in his text.( ) = 60 ( )( ) = 140 ( )

Now, we define the elliptic discriminant function ∆( ), and the modular invariant ( ).
Again, like with and , a full development of the nature and contexts of these functions
isn’t included here. They both play key roles in the theory of elliptic curves and modular forms.∆: →∆( ) = ( ( )) + 27( ( )): →( ) = 1728 ( ( ))∆( )



There is a trivially-proved result on modular forms that the weight of the product of two
forms is the product of their weights. From this, we can note that the numerator and
denominator of ( ) both have the same weight; it follows that ( ) is invariant under ( ).
Finally, writing ( ) as a Fourier series in terms of = :( ) = + 744 + 196,884 + 21,493,760 + 864,299,970 +
Note: the four definitions given here are taken straight from the corresponding section of the
text by Diamond and Shurman.

This is the end of the good definitions I’ll give here. The rest of the needed content is
either from entry level algebra or upper level algebra, or just simply very inaccessible in any
rigor to most typical undergraduates, myself included. For the inaccessible content, I’ll give the
hand-waving definitions and descriptions.

Some Light Definitions

1. Finite Simple Groups
Gannon very succinctly describes finite simple groups in his text; I’ll summarize it
here:
“Finite simple groups are to finite groups what the primes are to integers—they are
their elementary building blocks.”

All finite simple groups have been classified, this monumental work was wrapped
up, give or take, in the late 90’s. There are 18 infinite families (for example, cyclic
groups of prime order, / ) and 26 exceptional groups. The largest of these groups
is the so called “monster” group of Fischer and Griess. The order of the monster
group is approximately 8 × 10 .

2. Representation theory
Again, we’ll use Gannon’s description:
A representation of a group is an assignment of an × matrix ( ) to each
element of that group, so that the matrix product respects the group product:( ) ( ) = ( )
In essence, a representation of a group is a full description of its structure in the
language of linear algebra. The dimension of a representation is the size of the
matrices.
An representation can be reduced in terms of subspaces of the vector space acted
on by the matrices . A subspace of fixed under the group action matrices is
essentially a building block for the representation.



The Observation!

And finally, we’ve come to the point where we can look at the observation made by
John McKay, detailed in Gannon’s text. Mckay first noticed the following:196,884 ≈ 196,88321,493,760 ≈ 21,296,876864,299,970 ≈ 842,609,326
and shortly came to a more precise resulting numerology:196,884 = 196,883 + 121,493,760 = 21,296,876 + 196,883 + 1864,299,970 = 842,609,326 + 21,296,876 + 2 × 196,883 + 2 × 1
The numbers on the right side of these equalities are the first coefficients of the modular
invariant, ( ). The numbers on the right hand side are the dimensions of smallest “building
blocks” of the group representation of the Monster group.

This striking set of equalities continues, for all coefficients of the modular invariant. The
conjecture this observation lead to is, again, far beyond the means of this paper. Regardless, I
do believe that this seemingly-out-of-nowhere correspondence is simply another example of
the relations that appear in seemingly completely unrelated fields of mathematics. There are
implications of this observation in physics, more specifically string theory; even rudimentary
explanations of these implications are far beyond my current grasp.
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