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Abstract

We define n to be a pseuodoprime base a if an−1 ≡ 1 mod n and n is composite.
I was intrigued by a claim I read in the book “Number Theory in Science and
Communication” by Manfred Schroeder. The author stated in passing that if ψ2(n)
denotes the number of pseudoprimes less than or equal to n, then it holds that

ψ2(n) ∼ k · π(
√
n) (1)

with k = (1 +
√

5)/2, the golden ratio, and π(n) is the prime counting function.1

I have a softspot for the golden ratio and I thought a nice paper topic would
be to run some Sage computations and show that indeed these two functions are
asymptotic.

However, after researching more thoroughly and running some calculations I
found that (1) is false! Thus, the underlying motivation for this paper is to give
evidence that the statement is untrue, discuss why such a proposition may have
been mad. From here I would like to explore more thoroughly what we do know
about this function, and, in generality, what we know and would like to know about
the pseudoprimes.

The paper will begin by proving there are infinite pseudoprimes to any base.
From there, we will go on to describe useful aspects of the pseudoprimes and look
into important theorems and conjectures pertaining to these sneaky composites.
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1 Introduction

Fermat’s Little Theorem states that for all primes it holds that for any a ∈ Z

ap ≡ a mod p

Since modular exponentiation can be computed very quickly on a computer, Fer-
mat’s theorem provides an effective probabilistic algorithm for computing primality.
Of course knowing with what degree of certainty that a conjectured prime actually
is prime is critical to the security of many cryptosystems that protect our important
information.

A special case converse of Fermat’s Little Theorem was conjectured over twenty
five centuries ago by the Chinese. Namely that,

Theorem 1.1. If n divides 2n−1 − 1 then n is prime.

It was not until 1819 that the counterexample of 341 was offered to this theorem.2

Subsequently, it was discovered that there are many composite numbers, n, with the
property that for some fixed a it holds that

an−1 ≡ 1 mod n

For example, we can factor 341 = 11 · 33 and 91 = 7 · 13, yet it holds that 2340 ≡ 1
mod 341 and 391 ≡ 3 mod 91. I call these composites sneaky because they have the
potential to give a false positive for a hastily applied primality test with only a few
different bases considered. To give more clarity to the idea of a sneaky composite
number let me give a precise definition:

Definition 1.1. An integer n is a pseudoprime base a if (1) n is composite and (2)
an−1 ≡ 1 mod n

The presence of such pseudoprimes and their potential to influence false positives
in primality tests motivates further inquiry into the density of such numbers. Since
this paper will pay the most attention to pseudoprimes base 2, the reader should
assume that unless explicitly stated a pseudoprime refers to a pseudoprime base 2.
Some questions that could come to the mind of an earnest prime-smith may be:

1. Given an integer, a, how many pseudoprimes to the base a are there?

2. Are pseudoprimes useful?

3. What can be said about the density of pseudoprimes?

4. Is there an analogue of the prime counting function, π(n), for pseudoprimes
base a?

This paper will seek to answer these questions by pulling from several articles
and books on the matter as well as through direct computation in Sage.
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2 Number of Pseudoprimes

2.1 Proving There are Infinite Pseudoprimes to any Base

Since life with prime numbers is rarely easy, one might correctly guess that there
are infinitely many pseudoprimes to any base. We begin our discussion by proving
that there are infinite pseudoprimes base a for all a ∈ Z.

Theorem 2.1. For each integer a ≥ 2 there are infinitely many pseudoprimes base
a.3

Proof. We shall show that if p is any odd prime not dividing a2− 1, then n = a2p−1
a2−1

is a pseudoprime base a.

A quick aside, this statement is equivalent to the theorem since we know that
given any a there are infinitely many primes larger than a2 − 1 and hence infinitely
many n such that

n =
a2p − 1
a2 − 1

=
ap − 1
a− 1

· a
p + 1
a+ 1

For example if a = 2 and p = 5, we know that 5 - 22 − 1 thus our formula gives

n =
22·5 − 1
22 − 1

=
2009

3
= 341

Back to the proof of our theorem we see by squaring both sides in Fermat’s Little
Theorem we obtain

a2p ≡ a2 mod p

So, p divides a2p − a2. Since p does not divide a2 − 1 by hypothesis, and since

n− 1 =
a2p − a2

a2 − 1

we conclude that p divides n− 1. We now note that the identity

n−1∑
i=1

a2(p−i) = a2(p−1) + a2(p−2) + . . .+ a2 ≡ n− 1 mod p

implies that n−1 is the sum of an even number of terms of the same parity, so n−1
must be even. This means that both 2 and p divide n− 1, hence by an elementary
theorem we have 2p | n− 1. Putting this together gives a2p− 1 | an−1− 1. However,
a2p− 1 = n · (a2− 1), and thus, is by construction a multiple of n. This implies that

a2p − 1 ≡ 0 mod n

which gives the statement
an−1 ≡ 1 mod n
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This means that the set of pseudoprimes base a is injective into the set of primes
that do not divide a2 − 1. And since for all a there are infinite primes greater than
a2 − 1, there must be infinite pseudoprimes to any base.

2.2 Computing Pseudoprimes in Sage

We have now have an explicit formula to generate pseudoprimes. We can define
some functions in Sage and take a look at how quickly these numbers grow. To do
this I defined the following function:

sage: def q(a,p):
sage: return (aˆ(2*p)-1)/(aˆ2-1)

Listed below are the values of q(2, p) and q(3, p) for all p < 50:

Table 1: A Pseudoprime Generating Function Defined on the Primes

p q(2,p) q(3,p)
2 5 10
3 21 91
5 341 7381
7 5461 597871
11 1398101 3922632451
13 22369621 317733228541
17 5726623061 2084647712458321
19 91625968981 168856464709124011
23 23456248059221 1107867264956562636991
29 96076792050570581 588766087155780604365200461
31 1537228672809129301 47690053059618228953581237351
37 6296488643826193618261 25344449488056571213320166359119221
41 1611901092819505566274901 166284933091139163730593611482181209801
43 25790417485112089060398421 13469079580382272262178082530056677993891
47 6602346876188694799461995861 88370631126888088312150399479701864317919671

It is evident that this pseudoprime function grows rather quickly and for very
large primes becomes difficult to compute. Though there is little optimization in
my function, Sage will only compute up to p = next prime(108).
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2.3 Enumerating The Pseudoprimes Base 2

Now that we have proven there are infinite pseudoprimes by means of a function
defined on the primes, one might wonder if we have found a way to describe all the
pseudoprimes of a given base. Unfortunately, the function q : {a} × P → Pa with
P = {p : p is prime, p - a2− 1} and Pa = {pseudoprimes base a} is not a surjection.
This is quickly seen by the fact that 2560 ≡ 1 mod 561 with 561 = 3 · 11 · 17,
but 561 /∈ P . So, this means that there is more to be said about the density of
pseudoprimes.

3 Primality Testing and Pseudoprimes

We will begin to investigate the density of the pseudoprimes, but first we should
motivate why pseudoprimes deserve this attention.

3.1 A Very Fast Primality Test...

Large primes are the name of the game in much of cryptography and cryptographers
certainly want to reduce the risk as much as possible of letting a sneaky composite
pass as a prime in a cryptosystem. For this reason alone it would be of great
interest to know which composites share common structure with primes. However,
the application goes deeper.

Let us imagine that through painstaking computation we have computed a
database of all pseudoprimes base 2 up to 2M for some integer M . With our list in
hand, we then encounter a large integer, n, for which we would like to know whether
or not n is prime. Let us say that n can be encoded with no more than M − 1 bits.
If this is the situation we offer the following primality test.

Step 1: Does n appear in our list of pseudoprimes base 2. If yes, output ”False” and
terminate. If no, go on to Step 2.

Step 2: Compute 2n−1 mod n. If this is equal to 1, output ”True” and terminate. If
this is not equal to 1 output ”False” and terminate.

Since our list of pseudoprimes base 2 is a list of all composites, m, such that
2m−1 ≡ 1 mod m, it follows immediately that any numbers not in our list with
this property must be prime. Moreover, because modular exponentiation base two
is very fast, we have devised an extremely efficient primality testing algorithm.

3.2 How difficult is it to enumerate the pseudoprimes?

The above section demonstrates that if we had a comprehensive list of the pseu-
doprimes we could devise a fast primality test, but how realistic is it to obtain a
database of the pseudoprimes?
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3.2.1 A Pseudoprime Counting Function in Sage

I attempted to answer this question by doing my own computations in Sage. I
wished to construct a pseudoprime counting function ψ2(n). To do this I defined
the function:

sage: def psi(n):
sage: return sum(2.powermod(i-1,i)==1 for i in range(3,n+1,2)) - prime pi(n)+1

Basically, ψ2 cycles through all of the integers i ≤ n and sums each result when
2i−1 ≡ 1 mod i. Then it subtracts off the number of primes less than n. This
function is able to count the pseudoprimes up to n = 107 fairly quickly. But after
that it is no longer reasonable to count using this method. For instance, it takes 77
seconds in sage to compute ψ2(107). Below is a table of the function values:

Table 2: A Sage Pseudoprime Counting Function

n 101 102 103 104 105 106 107

ψ2(n) 0 0 3 22 78 245 750

I will return to a discussion of the pseudoprime counting function later in the
paper. Similar to primes, it is more desirable to have an explicit list of the pseudo-
primes. We now look at some current research into enumerating all of the pseudo-
primes base 2.

3.2.2 Current Research in Psuedoprimes

Early number theorists recognized the importance of the pseudoprimes and by 1926
Poulet had enumerated all of the pseudoprimes base 2 up to 50 million (≈ 226) 4.
Eighty years later5, Feitsma has produced a complete list up to 1017 (≈ 256).

This means that we can very quickly test the the primality of a 56 bit (24 digit)
number. Moreover, Feitsma is close to computing up to 264. Though she is yet
to publish the algorithm she uses for pseudoprimality discovery, she has posted
a table of her results. Moreover, her website contains an explicit database of all
pseudoprimes less than 1017. If we let ψa(n) denote the number of pseudoprimes
base a less than n then the counts as of September 2009 are given in the table below:
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Table 3: Number of Pseudoprimes Less Than or Equal to n

n ψ2(n)
103 3
104 22
105 78
106 245
107 750
108 2057
109 5597
1010 14884
1011 38975
1012 101629
1013 264239
1014 687007
1015 1801533
1016 4744920
1017 12604009
1018 33763684∗

1019 91210364∗

264 118968378∗

*These figures are not yet confirmed and are still being computed.

The amount of time put in by Feitsma indicates that determining pseudoprimes
becomes difficult for large n, however soon we will be able to quickly determine the
primality of any 64 bit number. So, this means that with our current techniques,
the outlook for the primality testing algorithm described in 3.2.1 to test say 128 bit
integers or 256 bit integers is a ways off. However, a more realistic solution is to turn
our attention back to ψ2, the pseudoprime counting function. If we can compute this
accurately, then at least we will be able to make probabilistic arguments concerning
the likeliness a large integer is prime.

4 The Density of the Pseudoprimes

The main interest of this paper is the pseudoprime counting function:

ψ2(n) = #{i ≤ n : 2i−1 ≡ 1 mod i, i is not prime}
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Namely, we will first give strong computational evidence concerning the falsity of
the claim:

ψ2(n) ∼ 1 +
√

5
2

· π(
√
n) (2)

4.1 Computational Evidence Against Schroeder’s Claim

For simplicity, we denote ℵ(n) = k · π(
√
n), with k the golden ratio and π(n) the

prime counting function. We begin our analysis by constructing some charts.

Figure 1: A plot of ψ2(n) (red) and ℵ(n) (blue)

Pictured above is a listplot made in sage from [0, 105]. In this domain it seems
plausible that the two functions are asymptotic. And, at the time the claim was
published (1984), the number of pseudoprimes base 2 was known only up to 109.

However, if we go out further we see convincing evidence that the two functions
are not asymptotic. Fortunately, the values of π(n) are well known up to n = 1010

and if we also utilize the table given by Feitsma we can make a simple plot that
indicates whether the functions are asymptotic. This is best seen by dividing ψ2(n)
by ℵ(n):
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Figure 2: A plot of
ψ2(n)
ℵ(n)

with domain [1, 1019]

The plot above indicates that the functions appear plausibly asymptotic up to
n = 108. But, for larger values it becomes clear that ℵ is growing much more quickly.
Since this is literally the cutting edge of the data we have on pseudoprimes, this
indicates that the conjecture is most likely not true.

4.2 A Heuristic for the Falsity of the Claim

The evidence given above raises the question, ”Why make such a claim?” A likely
explanation is that at the time the data suggested the truth of the claim. And it is
important to note that the claim is made in passing and no further justification is
given. So, Schroeder has very little stake in its correctness and it is most likely an
unchecked error in the text.

Another bit of evidence against the claim is that after researching this topic
extensively I could find no other reference to such a result. It seems likely that if
such a nice statement were true, there would be mention of it somewhere else.

However, my research did yield some results concerning ψ2(n). Namely, an upper
and lower bound for the function.

4.3 Bounding ψ2(n)

In Paul Erdös’s 1950 article, “On Almost Primes”, he proves the existence of an
upper bound for ψ2(n).
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Theorem 4.1. (Erdös)6 If ψ2(x) denotes the pseudoprime counting function then
for sufficiently large x it holds that:

ψ2(x) < xe

“
− 1

3
(log x)

1
4

”

A very bare bones sketch of his four page proof goes as follows. Let P denote
the set of all pseudoprimes less than x. We partition P by considering the function
g : {1, 2, . . . , x} → N defined as

g(n) = min{r : 2r ≡ 1 mod n}

We then form the partition

C1 = {n ∈ P : g(n) ≤ exp((log x)
1
2 )}

C2 = P − C1

Through partitioning both C1 and C2 into smaller subclasses, Erdös finds bounds
for both partitions, which he sums to arrive at his upper bound. However, if we
call the upper bound M(n), then the table below reveals that the bound proven by
Erdös is very generous.

Table 4: An Upper Bound on ψ2(n)

n ψ2(n) M(n)
103 3 583
104 22 5596
105 78 54118
106 245 525901
107 750 5127877
108 2057 50129228
109 5597 491053335
1010 14884 4818200394

Nonetheless, this result is important since it establishes that there is a definite
ceiling on the number of pseudoprimes base 2. In another article by Erdös, “On the
Converse of Fermat’s Theorem”, he claims that he can prove the following inequality:

Conjecture 4.1. (Erdös)7 For fixed c1, c2 and for every k ≥ 1 there exists x suffi-
ciently large such that

c1 · log x < ψ2(x) < c2 ·
x

(log x)k
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I was unable to locate Erdös’s proof of this claim, however if his conjecture holds
this immediately confirms the empirical data which suggests that ψ(n) < π(n). This
follows since the lower bound for π(n) is x

log x . Since Erdös’s work in the mid 19th
century, little has been discovered to directly bound ψ2. However, there are alternate
ways to approach this problem.

5 Pseudoprimes of k Factors

Since directly attacking the problem of the density of pseudoprimes seems a difficult
route, one might start considering ways to reduce the problem. Unlike the primes,
pseudoprimes have the additional structure of being composite. Thus, we can ask
questions regarding the amount of pseudoprimes with k factors. A priori it is possible
that given an integer, k, there are none or perhaps only finitely many pseudoprimes
with k factors. Or, one might start studying the density of pseudoprimes with k
factors. We will see below that some headway has been made in both of these
pursuits.

5.1 There Exist Infinite Pseudoprimes with k Factors

In 1949 Erdös proved the following theorem.

Theorem 5.1. (Erdös)8 For every k there exist infinitely many squarefree pseudo-
primes, n, with v(n) = k.

This result tells us the somewhat discouraging result that even for k equal to
some astronomically large integer, there are infinite pseudoprimes with v(n) = k.
However, the result does not suggest that the density of such factors is uniform.
In fact, it seems reasonable to conjecture that the a large amount of pseudoprimes
up to some bound, T , will have only two factors. William Galway has done some
research into this matter.

5.2 The Density of Pseudoprimes with 2 Factors

In a 2001 lecture entitled “The Density of Pseudoprimes with Two Prime Factors”
William Galway studies the density of pseudoprimes with two factors. For p, q
primes Galway defines the function

P2(x) = #{n ≤ x : n = pq, p < q, 2n−1 ≡ 1 mod 2}

P2 is a counting function for pseudoprimes with two factors. He then makes the
following conjecture:

Conjecture 5.1. (Galway)9

P2(x) ∼ C
√
x/ log2(x)

with C ≈ 30.03.
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Galway makes this conjecture by looking at pairs of primes that fall on lines
determined by prime factors of pseudoprimes. If we look at his conjecture it reveals
information regarding ψ2(n). Let C(n) denote Galway’s conjectured function that
asymptotic to P2(n). Plotted below is ψ2(n) and C(n):

Figure 3: ψ2(n) (blue) and C(n) (red) on the domain [103, 1019]

We see that this function seems to be a much better estimate than Erdös’s upper
bound and, at the very least, it confirms the fact that P2 < ψ2 for all sufficiently
large n. We also can look at ψ2

C :

Figure 4: ψ2(n)
C(n) on the domain [104, 1019]
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Although Galway’s conjecture has not been proven, it gives a nice lower bound
on ψ2. Moreover, if we let Q(n) = ψ2

C on the interval [1011, 1019] it appears that Q(n)
is increasing. It seems reasonable to conjecture that Q(n) < 1 for sufficiently large
n. Thus, C(n) may come close to approximating ψ2(n). Still, we need much more
data to even begin to conjecture about the relation between C and ψ2. Nonetheless,
by providing a lower bound, C(n) is helpful in determining the likelihood that an
integer that passes a base two pseudoprime test is indeed a prime.

6 Conclusion and Suggested Topics for Further Inquiry

This paper was motivated by a beautiful claim that turned out to be false. How-
ever, the claim inspired research into an overlooked subject that is both deep and
potentially useful. Though a comprehensive list of pseudoprimes base 2 up to some
large bound is far in the future, I hope that I have shown that sneaky composites
are not necessarily the enemy of a prime-smith. In fact, by studying pseudoprimes
and their properties we can learn much more about the structure of the primes and
integers in general.

If the reader enjoyed this topic I suggest looking into other formulations of pseu-
doprimes. Particularly fascinating are composites known as Carmichael Numbers.
These perhaps are the sneakiest of all composites for they are a pseudoprime in all
bases! That is if n is a Carmichael Number then for all a, an−1 ≡ 1 mod n.

In addition to Carmichael Numbers, other types of pseduoprimes can be defined.
Some examples are, Euler Pseudoprimes, Absolute Pseudoprimes and Strong Pseu-
doprimes. A good introduction to these numbers is contained in “Number Theory:
An Introduction Via the Distribution of Primes” by Fine and Rosenberger, and also
in “Prime Numbers” by Crandall and Pomerance.
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