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Abstract

The concept of Quaternion is introduced here through the group and ring theory. The
relationship between complex numbers (Gaussian Integers) and Quaternions can be verified by
the basic properties and operations of Quaternions, which is represented by the matrix form of
complex numbers. One can demonstrate the Fermats Two Square Theorem through Gaussian
Integers while the Four Square Theorem with Quaternions is a result following this application.
An efficient algorithm to compute the product of Quaternions will also be examined.

1 The Definition
Some simple group and ring theory will be introduced here for the understanding of Quaternion.

Definition 1.1. (Group). A non-empty set G is said to be a group if in G there is defined an
operation × such that:

1. a,b ∈ G implies that a×b ∈ G. (i.e. G is closed under ×)

2. Given a,b,c ∈ G, then a× (b× c) = (a×b)× c

3. There exists e ∈ G such that a× e = e×a = a for all a ∈ G

4. For every a ∈ G there exists an element b ∈ G such that a×b = b×a = e. (We denote this
element b as a−1)

These four conditions are called the group axioms, which are true for any given group. The
operation × is usually called product. For simplicity we will omit it from now on. Hence a×b =
ab.

Definition 1.2. (Abelian Group). A group G is said to be abelian if ab = ba for all a,b ∈ G.

Definition 1.3. (Ring). A ring is a set equipped with binary operations + and × and elements 0,1
such that R is an abelian group under +, and for all a,b,c ∈ R we have

1. 1a = a1 = a

2. (ab)c = a(bc)

3. a(b+ c) = ab+ac

Definition 1.4. (division ring). A ring R with unit is said to be a division ring if for every a 6= 0 in
R there is an element b ∈ R (usually written as a−1) such that a · a−1 = a−1 · a = 1. That is there
exists a multiplicative inverse for every nonzero element in R.

Definition 1.5. (Quaternions). Quaternions are a 4 turple non-communative ring over R4 and in
general writtin in the form a = a1 +a2i+a3 j+a4k, with the following operation defined.
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Figure 1: Going around the circle gives the product basis

let a, b be a Quaternions such a = a11+a2i+a3 j+a4k, b = b11+b2i+b3 j+b4k and i2 = c, j2 =
d, i j = k, jk = i,ki = j and ji =−k,k j =−i, ik =− j

In the figure above, if one goes around the circle clockwise, the product of any two successive
terms is the next one. By tracing around the circle counterclockwise, one will get negative
products instead.

Addition a+b = (a1 +b1)+(a2 +b2)i+(a3 +b3) j+(a4 +b4)k

Scalar Multiplication sa = sa1 + sa2i+ sa3 j+ sa4k

Quaternion Multiplication By following the distributive law, the product of two Quaternions can
be written as

ab = a1b1 +a1b2i+a1b3 j+a1b4k
+ a2b1i+a2b2i2 +a2b3i j+a2b4ik
+ a3b1 j+a3b2 ji+a3b3 j2 +a3b4 jk
+ a4b1k+a4b2ki+a4b3k j+a4b4k2

SAGE Example 1.6. We demosntrate the Quaternion operations using SAGE.

sage: N.<c,d,a1,a2,a3,a4,b1,b2,b3,b4,s> = QQ[]

sage: H.<i,j,k> = QuaternionAlgebra(c,d)

sage: a = a1 + a2 * i + a3 * j + a4 * k

sage: b = b1 + b2 * i + b3 * j + b4 * k

sage: a+b

a1 + b1 + (a2 + b2)*i + (a3 + b3)*j + (a4 + b4)*k

sage: s*a

a1*s + a2*s*i + a3*s*j + a4*s*k
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sage: a*b

-x*y*a4*b4 + x*a2*b2 + y*a3*b3 + a1*b1

+( y*a4*b3 - y*a3*b4 + a2*b1 + a1*b2)*i

+(-x*a4*b2 + x*a2*b4 + a3*b1 + a1*b3)*j

+( a4*b1 - a3*b2 + a2*b3 + a1*b4)*k

Definition 1.7. (Hamilton Quaternions). Hamilton Quaternions are Quaternions such that i2 =
j2 = k2 =−1.

Unless noted otherwise, Quaternions for now on will refer to Hamilton Quaternions.

SAGE Example 1.8. We demosntrate the Hamilton Quaternion Multiplication using SAGE.

sage: N.<a1,a2,a3,a4,b1,b2,b3,b4> = QQ[]

sage: H.<i,j,k> = QuaternionAlgebra(Frac(N),-1,-1)

a1*b1 - a2*b2 - a3*b3 - a4*b4

+ (a2*b1 + a1*b2 - a4*b3 + a3*b4)*i

+ (a3*b1 + a4*b2 + a1*b3 - a2*b4)*j

+ (a4*b1 - a3*b2 + a2*b3 + a1*b4)*k

2 Two Square Theorem
In this section, we will show the Two Square Theorem, which is an example that some integers can
be represented as a sum of two squares. This will be the basis for the later Four Square Theorem.
Gaussian numbers and primes, Wilsons Theorem, and Lagranges lemma will be introduced for the
Two Square Theorem proof.

Definition 2.1. (Gaussian integers). Gaussian integer is a complex number whose real and imag-
inary part are both integers. The Gaussian integers form a ring that is often denoted by Z[i].
Gaussian integers are written

Z[i] = {a+bi|a,b ∈ Z}

The norm of a Gaussian integer is the natural number defined as

N(a+bi) = |a+bi|= a2 +b2 = (a+bi)(a+bi) = (a+bi)(a−bi)

Lemma 2.2. The norm of the Gaussian integers is multiplicative
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Proof. Let z = a + bi, w = c + di

N(z ·w) = |(a+bi)(c+di)|
= |(ac−bd)+(ad +bc)i|
= (ac−bd)2 +(ad +bc)2

= a2c2 +b2d2−2abcd +a2d2 +b2c2 +2abcd
= a2c2 +b2d2 +a2d2 +b2c2

= a2(c2 +d2)+b2(c2 +d2)

= (a2 +b2)(c2 +d2)

= |a+bi||c+di|
= N(z)N(w)

Definition 2.3. (Gaussian Prime). Gaussian Prime is a Gaussian integer that is not the product of
Gaussian integers of smaller norm.

For example, we can show that 4+ i is Gaussian prime.

norm(4+ i) = 16+1 = 17,which is a prime in Z

Hence, 4+i is not a product of Gaussian integers of smaller norm, since there is no such norm that
divide 17.
Similarly, we can show that 2 is not Gaussian prime.

2 = (1+ i)(1− i)

Both 1 - i and 1 + i have norm 2, which is smaller than norm(2) = 4

Lemma 2.4. An ordinary prime p ∈ N is a Gaussian prime <=> p is not the sum of two squares.

Proof.(<=) Suppose that we have an ordinary prime p that is not a Gaussian prime, so it can be
factorized in Z[i]:

p = (a+bi)γ,

where a + bi and γ are Gaussian integers where norm(p) < norm(p2). Taking the conjugates of
both sides we get

p = (a−bi)γ̄,

since p is real, p = p̄. Hence, by multiplying these two expressions

p2 = (a−bi)(a+bi)γγ̄

= (a2 +b2)|γ|2

both a2 +b2, |γ|2 > 1. However the only such factorization of p2 is p× p, hence p = a2 +b2.
(=>) Conversely, if an ordinary prime p = a2 + b2 with a,b ∈ Z then p is not a Gaussian prime
because it can be written as

p = (a−bi)(a+bi)

into factors of norm a2 +b2 = p < norm(p) = p2
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Theorem 2.5. (Wilson’s theorem). If p is prime, then (p−1)!≡−1(mod p).

Proof. If p = 2, then (2−1)! = 1! = 1≡−1 (mod p)
Suppose p is a prime such that p > 2. If a ∈ {1,2, ..., p−1}, then the equation

ax≡ 1 (mod p)

has a unique solution a′ ∈ {1,2, ..., p−1}. If a = a′, then a2 ≡ 1 (mod p). So, a ∈ {1, p−1}. We
can thus pair off the elements of {2,3, ..., p−2}, each with their inverse. Therefore,

2 ·3 · · · · · (p−2) ≡ 1 (mod p)
1 ·2 ·3 · · · · · (p−2)(p−1) ≡ (p−1) (mod p)

(p−1)! ≡ −1 (mod p)

Lemma 2.6. (Lagrange’s lemma). A prime p = 4n+1 divides m2 +1 for some m ∈ Z.

Proof. If we apply Wilson’s theorem to the prime p = 4n+1 we get

−1 ≡ 1×2×· · ·×4n(mod p)
≡ (1×2×· · ·×2n)× ((2n+1)×· · ·× (4n−1)× (4n))(mod p)
≡ (1×2×· · ·×2n)× ((−2n)×· · ·× (−2)× (−1))(mod p) since p− k ≡ (−kmod p)
≡ (1×2×· · ·×2n)2(−1)2n(mod p)
≡ (1×2×· · ·×2n)2(mod p)

Now we have laid out enough ground work to prove the Two Square Theorem

Theorem 2.7. (Fermat’s Two Square Theorem). An odd prime p is expressible as sum of two
squares if and only if p≡ 1(mod4).

Proof. Given p, let m ∈ Z be such that p divides m2 +1, as in the lemma 2.6. In Z[i], m2 +1
had the factorization

m2 +1 = (m− i)(m+ i)

And, even though p divides m2 +1, p does not divide m− i or m+ i because m
p −

i
p and m

p + i
p are

not Gaussian integers. Since m2 + 1 is not a Gaussian prime (by definition 2.3), p = a2 + b2 as
shown in Lemma 2.4
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3 Complex Numbers and Quaternion Integers
In this section, the Quaternion is represented as complex numbers. Through the transformation of
the Quaternion into a 2 by 2 matrix, we verify and observe the group properties of Quaternions.

Remark 3.1. Any given Quaternion can be written as two complex numbers.

Proof. Let C2 be a two-dimensional vector space over the complex numbers. Choose a basis
consisting of two elements 1 and j. A vector in C2 can be written in terms of the basis elements 1
and j as

(a+bi)1+(c+di) j = a+bi+ c j+di j
= a+bi+ c j+dk

Another way to represent a complex number is in the form of matrix. Let(
a b
−b a

)
= a

(
1 0
0 1

)
+b

(
0 1
−1 0

)
= aI +bi

Where, I =
(

1 0
0 1

)
and i =

(
0 1
−1 0

)
. Then we get the identity i2 =

(
0 1
−1 0

)(
0 1
−1 0

)
=−1.

Also norm
(

a b
−b a

)
= a2 +b2 = det

(
a b
−b a

)
.

Using these facts, we define a Quaternion as follow.

Let α = a+bi
β = c+di(

α β

−β α

)
= Quaternion

Then we observe the following facts.(
α β

−β α

)
=

(
a+bi c+di
−c+di a−bi

)
= a

(
1 0
0 1

)
+b

(
0 1
−1 0

)
+ c

(
0 i
i 0

)
+d

(
i 0
0 −i

)
= a1+bi+ c j+dk

and we can verfiy the relationship

i2 = j2 = k2 =−1
i j = k =− ji
jk = i =−k j
ki = j =−ik
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Norm of Quaternion

norm
(

α β

−β α

)
= αα +ββ

= a2 +b2 + c2 +d2

= det
(

α β

−β α

)
Quaternion product(

α1 β1

−β1 α1

)(
α2 β2

−β2 α2

)
=

(
α1α2−β1β2 α1β2 +β1α2

−β1α2−α1β2 −β1β2 +α1α2

)
We see that α1α2−β1zβ2 =−β1β2 +α1α2 and α1β2 +β1α2 =−(−β1α2−α1β2)

4 Four square theorem
In this section, we prove that any natural number can be expressed as the sum of four integer
squares by using the Hurwitz Quaternion. This proof is similar to the Fermats Two Square Theorem
( 2.7) given in the previous section

Definition 4.1. (Hurwitz Quaternion). Hurwitz Quaternion is a Quaternion where the coefficients
are either all integers or half-integers. The set of all Hurwitz Quaternion are denoted as

H = {a+bi+ c j+dk ∈H|a,b,c,d ∈ Z or a,b,c,d ∈ Z+ 1
2
}

or

H = {A1+ i+ j+ k
2

+Bi+C j+Dk ∈H|A,B,C,D ∈ Z}

Remark 4.2. If p = 2n+1, then there are l,m ∈ Z such that p divides 1+ l2 +m2

Proof. The squares x2,y2 of any two of the numbers l = 0,1,2, ...,n are incongurent mod p because

x2 ≡ y2 (mod p) ⇒ x2− y2 ≡ 0 (mod p)
⇒ (x− y)(x+ y)≡ 0 (mod p)
⇒ x− y≡ 0 (mod p) to x+ y≡ 0 (mod p)

and x+y� 0 (mod p) since 0 < x+ y < p. Thus the n+1 numbers l = 0,1,2, ...,n gives n+1 incon-
gruent values of l2(mod p)
Similarly, the numbers m = 0,1,2, ...,n also gives n+1 incongruent values of m2(mod p), hence
−m2 which is −1−m2
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However, only 2n+1 incongruent values exist for mod p = 2n +1. Therefore, for some l and m we
have

l2 ≡−1−m2 (mod p)

That is, p|1+ l2 +m2.

Theorem 4.3. (Four square theorem). Every natural number is the sum of four square.

Proof. If q = a1+bi+ c j+dk then norm(q) is

det
(

a+di b+ ci
−b+ ci a−di

)
= a2 +b2 + c2 +d2

Since det(q1)det(q2) = det(q1q2), we can rewrite the complex two square identity as a real four
square identity, which becomes

(a2
1 +b2

1 + c2
1 +d2

1)(a
2
2 +b2

2 + c2
2 +d2

2) = (a1a2−b1b2− c1c2−d1d2)
2

+ (a1b2 +b1a2 + c1d2−d1c2)
2

+ (a1c2−b1d2 + c1a2 +d1b2)
2

+ (a1d2 +b1c2− c1b2 +d1a2)
2

Hence, we have,

(a2
1 +b2

1 + c2
1 +d2

1) = ((a1a2−b1b2− c1c2−d1d2)
2

+ (a1b2 +b1a2 + c1d2−d1c2)
2

+ (a1c2−b1d2 + c1a2 +d1b2)
2

+ (a1d2 +b1c2− c1b2 +d1a2)
2)

× 1
a2

2 +b2
2 + c2

2 +d2
2

Now we consider the following two cases.
if p is an ordinary prime but not a Hurwitz prime, then

p = a2 +b2 + c2 +d2 where 2a,2b,2c,2d ∈ Z

Proof. Suppose p has a nontrivial Hurwitz integer factorization

p = (a+bi+ c j+dk)γ

Then, taking the conjugates of both sides, we get

p = γ(a−bi− c j−dk), since p = p

Multiplying the two expressions for p gives

p2 = (a+bi+ c j+dk)γγ(a−bi− c j−dk)
= (a+bi+ c j+dk)(a−bi− c j−dk)γγ since γγ is real
= (a2 +b2 + c2 +d2)|γ|2,

9



where both a2+b2+c2+d2, |γ|2 > 1. But the only positive integer factorization of p2 is pp, hence
a2 +b2 + c2 +d2.
Finally, since a,b,c,d, are the coefficients of a Hurwitz integer, they could be half integers, which
in case 2a,2b,2c,2d ∈ Z
The last case to consider is for any odd prime p, which by Remark 4.2 above, we have shown
p|1+ l2 +m2.
We factorize 1+ l2 +m2 into the product of Hurwitz integers

(1− li−m j)(1+ li+m j)

If p is a Hurwitz prime, then p divides (1− li−m j) or (1+ li+m j). However,

1
p
− li

p
− m j

p
,

1
p
+

li
p
+

m j
p

are both not a Hurwitz integer. Hence our arbitary odd prime p is not a Hurwithz prime, and
therefore by the previous argument

p = A2 +B2 +C2 +D2 with A,B,C,D ∈ Z

is shown for the Four Square Theorem.

5 Fast Quaternion Products
In general to compute the product of two Quaternion, namely X = x1 + x2i+ x3 j + x4k and Y =
y1 + y2i+ y3 j+ y4k their product is:

XY = x1∗ y1− x2∗ y2− x3∗ y3− x4∗ y4
+ (x2∗ y1+ x1∗ y2− x4∗ y3+ x3∗ y4)∗ i
+ (x3∗ y1+ x4∗ y2+ x1∗ y3− x2∗ y4)∗ j
+ (x4∗ y1− x3∗ y2+ x2∗ y3+ x1∗ y4)∗ k

This would normally require 16 multiplications. To reduce the complexity of Quaternion product
computation, reducing the number of multiplications is crucial. Here we show an algorithm that
needs eight multiplications to correctly compute the product of the Quaternions.
Let Z = XY = z1 + z2i+ z3 j+ z4k where,

z1 = x1∗ y1− x2∗ y2− x3∗ y3− x4∗ y4,
z2 = x2∗ y1+ x1∗ y2− x4∗ y3+ x3∗ y4,
z3 = x3∗ y1+ x4∗ y2+ x1∗ y3− x2∗ y4,
z4 = x4∗ y1− x3∗ y2+ x2∗ y3+ x1∗ y4
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Define the following. Let

I = x1y1

II = x4y3

III = x2y4

IV = x3y2

V = (x1 + x2 + x3 + x4)(y1 + y2 + y3 + y4)

V I = (x1 + x2− x3− x4)(y1 + y2− y3− y4)

V II = (x1− x2 + x3− x4)(y1− y2 + y3− y4)

V III = (x1− x2− x3 + x4)(y1− y2− y3 + y4)

Then the each zi equals the following

z1 = 2I− V +V I +V II +V III
4

z2 = −2II +
V +V I−V II−V III

4

z3 = −2III +
V −V I +V II−V III

4

z4 = −2IV +
V −V I−V II +V III

4

This way we will only have to compute 8 multiplications at most.

SAGE Example 5.1. We verify the equailty in SAGE.

sage: N.<a1, a2, a3, a4, b1, b2, b3, b4> = QQ[]

sage: H.<ii,jj,kk> = QuaternionAlgebra(Frac(N), -1, -1)

sage: a = a1 + a2*i + a3*j + a4*k

sage: b = b1 + b2*i + b3*j + b4*k

sage: c = a*b; c

a1*b1 - a2*b2 - a3*b3 - a4*b4

+ (a2*b1 + a1*b2 - a4*b3 + a3*b4)*i

+ (a3*b1 + a4*b2 + a1*b3 - a2*b4)*j

+ (a4*b1 - a3*b2 + a2*b3 + a1*b4)*k

sage: I = a1*b1

sage: II = a4*b3

sage: III= a2*b4

sage: IV = a3*b2

sage: V = (a1+a2+a3+a4)*(b1+b2+b3+b4)
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sage: VI = (a1+a2-a3-a4)*(b1+b2-b3-b4)

sage: VII = (a1-a2+a3-a4)*(b1-b2+b3-b4)

sage: VIII= (a1-a2-a3+a4)*(b1-b2-b3+b4)

sage: f1 = 2*I - (V + VI + VII + VIII)/4

sage: f2 = -2*II + (V + VI - VII - VIII)/4

sage: f3 = -2*III + (V - VI + VII - VIII)/4

sage: f4 = -2*IV + (V - VI - VII + VIII)/4

sage: q3 = f1 + f2*i + f3*j + f4*k; q3

a1*b1 - a2*b2 - a3*b3 - a4*b4

+ (a2*b1 + a1*b2 - a4*b3 + a3*b4)*i

+ (a3*b1 + a4*b2 + a1*b3 - a2*b4)*j

+ (a4*b1 - a3*b2 + a2*b3 + a1*b4)*k

sage: c == q3

True

SAGE Example 5.2. The following is the SAGE implementation of the normal(lame) and the fast
algorithm

sage: def slow_mult((x1, x2, x3, x4), (y1, y2, y3, y4)):

... a1 = x1*y1; a2 = x2*y2; a3 = x3*y3; a4 = x4*y4

... b1 = x1*y2; b2 = x2*y1; b3 = x3*y4; b4 = x4*y3

... c1 = x1*y3; c2 = x2*y4; c3 = x3*y1; c4 = x4*y2

... d1 = x1*y4; d2 = x2*y3; d3 = x3*y2; d4 = x4*y1

... A = a1 - a2 - a3 - a4

... B = b1 + b2 + b3 - b4

... C = c1 - c2 + c3 + c4

... D = d1 + d2 - d3 + d4

... return (A,B,C,D)

sage: slow_mult((1,2,3,4),(1,2,3,4))

(-28, 4, 6, 8)

sage: def fast_mult((a1, a2, a3, a4), (b1, b2, b3, b4)):

... I = a1*b1; II = a4*b3; III= a2*b4; IV = a3*b2

... V = (a1+a2+a3+a4)*(b1+b2+b3+b4)

... VI = (a1+a2-a3-a4)*(b1+b2-b3-b4)

... VII = (a1-a2+a3-a4)*(b1-b2+b3-b4)

... VIII= (a1-a2-a3+a4)*(b1-b2-b3+b4)

...

... f1 = 2*I - (V + VI + VII + VIII)/4

... f2 = -2*II + (V + VI - VII - VIII)/4

... f3 = -2*III + (V - VI + VII - VIII)/4

... f4 = -2*IV + (V - VI - VII + VIII)/4

...

... return (f1, f2, f3, f4)
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sage: fast_mult((1,2,3,4), (1,2,3,4))

(-28, 4, 6, 8)

sage: a = int(random()*2^10); b = int(random()*2^10);

sage: c = int(random()*2^10); d = int(random()*2^10);

sage: e = int(random()*2^10); f = int(random()*2^10);

sage: g = int(random()*2^10); h = int(random()*2^10);

sage: timeit(’slow_mult((a,b,c,d), (e, f, g, h))’)

625 loops, best of 3: 1.91 s per loop

sage: timeit(’fast_mult((a,b,c,d), (e,f,g,h))’)

625 loops, best of 3: 24.6 s per loop

sage: a = int(random()*2^768); b = int(random()*2^768);

sage: c = int(random()*2^768); d = int(random()*2^768);

sage: e = int(random()*2^768); f = int(random()*2^768);

sage: g = int(random()*2^768); h = int(random()*2^768);

sage: timeit(’slow_mult((a,b,c,d), (e, f, g, h))’)

625 loops, best of 3: 151 s per loop

sage: timeit(’fast_mult((a,b,c,d), (e,f,g,h))’)

625 loops, best of 3: 118 s per loop

One can see that when the coefficients are small, the computation does not make any significant
improvement. However, if we use 768bit numbers, then a reduced number of multiplications in
this algorithm provide greater efficiency for the Quaternion multiplication process.
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