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1 The Elliptic Curve Discrete Logarithm Problem

Whereas in the real numbers the logarithm is a solution x to the equation
ax = b, the discrete logarithm is an analogous concept for finite abelian
groups.

Definition 1.1. Given a finite abelian group G written multiplicatively
and elements b and g in G, the discrete logarithm problem (DLP) consists
of finding an integer n such that bn = g, if such an n exists.

The difficulty involved in computing the discrete logarithm varies with
the choice of G. For example, in the additive group of integers modulo n,
(Z/nZ)+, the problem can be solved efficiently. Given b and g such that
0 ≤ b, g ≤ n − 1 and kb ≡ g mod n for some integer k, then the Extended
Euclidean Algorithm can be used to quickly compute a such that ba ≡ 1
mod n, so that akb ≡ k mod n. See [3] for a more detailed explanation.

For the purposes of cryptography, a group in which the discrete lo-
goarithm is difficult to compute is desirable. In such a context, the dis-
crete logarithm becomes a trapdoor, or one-way, function, since exponen-
tiation (the inverse operation) can always be performed efficiently through
repeated squaring. There are two widely used groups in public key cryp-
tosystems based on the discrete logarithm problem, the multiplicative group
of integers (Z/pZ)∗ and the elliptic curve group E(Z/nZ). The first popu-
lar public key cryptosystems were based on the DLP in (Z/nZ)∗. Systems
based on E(Z/nZ) have drawn substantial interest more recently due to the
DLP being harder in that context. In this paper, we focus on the DLP in
E(Z/nZ).
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1.1 The Elliptic Curve Group

Definition 1.2. An elliptic curve over a field K is the set of solutions to
the equation

y2 = x3 + ax+ b (1.1)

where a, b ∈ K and −16(4a3 + 27b2) 6= 0.
The requirement that −16(4a3+27b2) 6= 0 precludes curves with singular

points, i.e. cusps and self-intersections. There is a natural group structure
on

E(K) = {(x, y) ∈ K ×K|y2 = x3 + ax+ b} ∪ {O}, (1.2)

the set of solutions together with a point O “at infinity.” O is the additive
identity. If P = (x, y) ∈ E(K), −P = (x,−y). Suppose there are points
P = (x1, y1) and Q = (x2, y2) in E(K) such that niether is O and P 6= −Q.
Then P +Q = (x3, y3), where x3 = λ2 − x1 − x2, y3 = λ(x1 − x3)− y1, and
λ is computed as follows.

1. If P = Q, then λ =
2x2

1+a
2y1

.

2. If P 6= Q, then λ = y2−y1
x2−x1

.

There is a geometric interpretation to this group structure on E(K)
when K = R. If P and Q are distinct and not inverses, −(P + Q) is the
third point on E(K) that lies along the line through P and Q. −2P is the
other point of E(K) that lies along the line tangent to E(K) at P . However,
R is not a suitable field to use in cryptography due to the roundoff errors
produced during computations with real numbers. Instead, a finite field Fq

is typically used. If Fq is used, then it must not have characteristic 2 or 3
since −16(4a3 + 27b2) = 0 in those cases. [1] has an alternate form of the
above equation for an elliptic curve and law of addition that permits fields
of characteristic 2 to be used.

1.2 The Elliptic Curve DLP for Fq

Definition 1.3. Given a finite field /Fq, an elliptic curve E over Fq, a
point P of order n in E(Fq), and a point Q in E(Fq), the elliptic curve
discrete logarithm problem (ECDLP) consists of finding an integer k such
that 0 ≤ k ≤ n and Q = kP , if such k exists.
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2 The Pollard ρ-Algorithm

Whereas subexponential running time algorithms exist for the DLP in (Z/nZ)∗,
e.g. the index-calculus algorithm, no subexponential algorithms are known
for the ECDLP in general [1]. There are a few special cases in which
subexponential attacks on ECDLP exist. Semaev, Smart, Satoh, and Araki
showed that if the order of E(Fq) is q, ECDLP can be solved in polyno-
mial time. Also, if the order of E(Fq) divides qk − 1 for small k (in prac-
tice, k ≤ C ≈ 20), then a technique discovered by Menezes, Okamoto and
Vanstone provides a subexponential time algorithm. However, for suitable
choices of q and E, the best known attack is the Pollard-ρ algorithm [2].

The key feature of the Pollard ρ-algorithm is a so-called random walk on
E(Fq). Let |E(Fq)| = n. This sequence of points is not truly random, being
generated by a choice of set partition and computations in E(Fq). However,
due to the unpredictability of the computations in this group, the sequence
turns out to be “random enough.” Let P and Q be points in E(Fq) such
that Q = kP .

1. Partition E(Fq) into three sets of about the same size, S1, S2, and S3,
with O not in S2.

2. Generate a random walk consisting of a sequence of points R0, R1, . . .,
where R0 = P and Ri+1 is defined as follows:

(a) Ri ∈ S1: Ri+1 = Q+Ri.

(b) Ri ∈ S2: Ri+1 = 2Ri.

(c) Ri ∈ S3: Ri+1 = P +Ri.

Moreover, Ri can be written as aiP + biQ, where ai+1 is defined as

(a) ai ∈ S1: ai+1 = ai.

(b) ai ∈ S2: Ri+1 = 2ai mod n.

(c) ai ∈ S3: Ri+1 = ai + 1.

and bi+1 is defined as

(a) bi ∈ S1: bi+1 = bi + 1.

(b) bi ∈ S2: bi+1 = 2bi mod n.

(c) bi ∈ S3: bi+1 = bi.

Accordingly, since R0 = P , a0 = 1 and b0 = 0.
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3. For reasons that will be given later, this sequence of points must be
eventually periodic. That is, for some Rj in the sequence, Rj appears
in the sequence again, so that beginning with at least the j-th term
the sequence repeats. Examine each of pair of points (Ri, R2i) for
i = 0, 1, 3, . . . until m is found such that Rm = R2m.

4. Compute k = a2m−am
bm−b2m

mod n.

Presently we demonstrate the correctness of the Pollard ρ-algorithm.

Proof. Given any i, the point Ri determines Rj for all j ≥ i, since each
point only depends on the preceding point. Thus, if Ri = Ri+l for some
i and l, then Rj = Rj+l for all j ≥ i. Since E(Fq) is finite, it must be
the case that some point in E(Fq) appears twice in the sequence. Thus the
sequence is eventually periodic. Let Ri be the first point that repeats in the
sequence, and let l be the smallest positive integer such that Ri = Ri+l. The
algorithm considers the sequence of pairs of points {(Rj , R2j)}. Note that
2j − j = j, so that for j a multiple of l, Rj = R2j . Let j∗ be the smallest
positive integer such that j∗ ≥ i and l|j∗; clearly, as multiples of l can be
arbitrarily large, j∗ exists. Then the algorithm finds the pair (Rj∗ , R2j∗),
and Rj∗ = R2j∗ . Thus, k is computed.

[2] gives an example run of the Pollard ρ-algorithm for the curve y2 =
x3 + 34x + 10 over the field F47 with P = (30, 26) and Q = (35, 41).
|E(F47)| = 41 First, E(F47) is partitioned according the y values of the
points. S1 = {R = (x, y) ∈ E(F47)|0 ≤ y < 15}, S2 = {R = (x, y) ∈
E(F47)|15 ≤ y ≤ 30}, and S3 = {R = (x, y) ∈ E(F47)|30 ≤ y ≤ 47}. Begin-
ning the initial values R0 = (30, 26), a0 = 1, andb0 = 0, pairs in the sequence
{(Rj , R2j)} are generated.

• (R1, R2) = ((30, 26), (14, 9))

• (R2, R4) = ((14, 9), (28, 42))

• (R3, R6) = ((20, 18), (30, 12))

• (R4, R8) = ((28, 42), (30, 21))

• (R5, R10) = ((6, 17), (30, 21))

• (R6, R12) = ((30, 21), (30, 21))

It is found that (R1, R2) = ((30, 21), (30, 21)) = (R6, R12). k is com-
puted to be a12−a6

b6−b12
= 5−10

8−23 = −1
−5 = 14 mod 41.
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