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1 The Elliptic Curve Discrete Logarithm Problem

Whereas in the real numbers the logarithm is a solution x to the equation
a® = b, the discrete logarithm is an analogous concept for finite abelian
groups.

Definition 1.1. Given a finite abelian group G written multiplicatively
and elements b and ¢ in G, the discrete logarithm problem (DLP) consists
of finding an integer n such that b™ = g, if such an n exists.

The difficulty involved in computing the discrete logarithm varies with
the choice of GG. For example, in the additive group of integers modulo n,
(Z/nZ)", the problem can be solved efficiently. Given b and g such that
0<b,g<n-—1and kb= g mod n for some integer k, then the Extended
Euclidean Algorithm can be used to quickly compute a such that ba = 1
mod n, so that akb =k mod n. See [3] for a more detailed explanation.

For the purposes of cryptography, a group in which the discrete lo-
goarithm is difficult to compute is desirable. In such a context, the dis-
crete logarithm becomes a trapdoor, or one-way, function, since exponen-
tiation (the inverse operation) can always be performed efficiently through
repeated squaring. There are two widely used groups in public key cryp-
tosystems based on the discrete logarithm problem, the multiplicative group
of integers (Z/pZ)* and the elliptic curve group E(Z/nZ). The first popu-
lar public key cryptosystems were based on the DLP in (Z/nZ)*. Systems
based on E(Z/nZ) have drawn substantial interest more recently due to the
DLP being harder in that context. In this paper, we focus on the DLP in
E(Z/nZ).



1.1 The Elliptic Curve Group

Definition 1.2. An elliptic curve over a field K is the set of solutions to
the equation

v =23 +ax+b (1.1)

where a,b € K and —16(4a® + 27b%) # 0.

The requirement that —16(4a®+27b%) # 0 precludes curves with singular
points, i.e. cusps and self-intersections. There is a natural group structure
on

E(K) = {(s,9) € K x Kly? =° +ax + 5} U{O},  (1.2)

the set of solutions together with a point O “at infinity.” O is the additive
identity. If P = (x,y) € E(K), —P = (z,—y). Suppose there are points
P = (z1,y1) and Q = (x2,y2) in E(K) such that niether is O and P # —Q.
Then P+ Q = (z3,y3), where 23 = A2 — 21 — 29, y3 = A(x1 — 23) — 1, and
A is computed as follows.

. _ 222+4a
1. If P=@Q, then A = 21y1 .

2. If P # Q, then A = =4

T2—x1

There is a geometric interpretation to this group structure on E(K)
when K = R. If P and @ are distinct and not inverses, —(P + Q) is the
third point on E(K) that lies along the line through P and Q. —2P is the
other point of F(K) that lies along the line tangent to F(K) at P. However,
R is not a suitable field to use in cryptography due to the roundoff errors
produced during computations with real numbers. Instead, a finite field I,
is typically used. If F, is used, then it must not have characteristic 2 or 3
since —16(4a® + 27b%) = 0 in those cases. [1] has an alternate form of the
above equation for an elliptic curve and law of addition that permits fields
of characteristic 2 to be used.

1.2 The Elliptic Curve DLP for F,

Definition 1.3. Given a finite field /F,, an elliptic curve E over Fy, a
point P of order n in E(F,;), and a point @ in E(F,), the elliptic curve
discrete logarithm problem (ECDLP) consists of finding an integer k such
that 0 < k <n and @ = kP, if such k exists.



2 The Pollard p-Algorithm

Whereas subexponential running time algorithms exist for the DLP in (Z/nZ)*,
e.g. the index-calculus algorithm, no subexponential algorithms are known
for the ECDLP in general [1]. There are a few special cases in which
subexponential attacks on ECDLP exist. Semaev, Smart, Satoh, and Araki
showed that if the order of E(F,) is ¢, ECDLP can be solved in polyno-
mial time. Also, if the order of E(F,) divides ¢* — 1 for small k (in prac-
tice, k < C = 20), then a technique discovered by Menezes, Okamoto and
Vanstone provides a subexponential time algorithm. However, for suitable
choices of ¢ and E, the best known attack is the Pollard-p algorithm [2].

The key feature of the Pollard p-algorithm is a so-called random walk on
E(F,). Let |E(Fy)| = n. This sequence of points is not truly random, being
generated by a choice of set partition and computations in E(F,). However,
due to the unpredictability of the computations in this group, the sequence
turns out to be “random enough.” Let P and @ be points in E(F,) such
that Q = kP.

1. Partition E(F,) into three sets of about the same size, S, Sz, and Ss,
with O not in Ss.

2. Generate a random walk consisting of a sequence of points Ry, R1, ...,
where Rg = P and R;11 is defined as follows:

(a) R; € 57: R =Q+ R;.
(b) R; € So: Rz‘+1 = 2R;.

(C) R; € Sg: Ri+1 =P+ R;.
Moreover, R; can be written as a; P + b;), where a; 11 is defined as
(a) a; € Sy: i1 = Q5.

(b) a; € So: Rit1 = 2a; mod n.
(C) a; € S3: Riy1=a;+ 1.
and b;41 is defined as

(a) b, € Sy: bi+1 =b; + 1.

(b) b; € Sa: bjy1 = 2b; mod n.
(C) b; € S3: bir1 =b;.

Accordingly, since Ry = P, ag =1 and by = 0.



3. For reasons that will be given later, this sequence of points must be
eventually periodic. That is, for some R; in the sequence, R; appears
in the sequence again, so that beginning with at least the j-th term
the sequence repeats. Examine each of pair of points (R;, Ry;) for
1=0,1,3,... until m is found such that R,, = Ro,.

4. Compute k = % mod n.
Presently we demonstrate the correctness of the Pollard p-algorithm.

Proof. Given any 4, the point R; determines R; for all j > i, since each
point only depends on the preceding point. Thus, if R; = R;4; for some
i and [, then R; = R;4 for all j > 4. Since E(F,) is finite, it must be
the case that some point in E(F,) appears twice in the sequence. Thus the
sequence is eventually periodic. Let R; be the first point that repeats in the
sequence, and let [ be the smallest positive integer such that R; = R;4;. The
algorithm considers the sequence of pairs of points {(R;, Ra;)}. Note that
2j —j = j, so that for j a multiple of I, R; = Ry;. Let j* be the smallest
positive integer such that j* > i and l|j*; clearly, as multiples of [ can be
arbitrarily large, j* exists. Then the algorithm finds the pair (R;«, Rgj-),
and Rj+ = Rgj«. Thus, k is computed.

[2] gives an example run of the Pollard p-algorithm for the curve y? =
23 + 342 + 10 over the field Fy; with P = (30,26) and Q = (35,41).
|E(F47)| = 41 First, E(F47) is partitioned according the y values of the
points. S1 = {R = (z,y) € E(F47)|0 < y < 15}, So = {R = (z,y) €
E(Fy7)[15 < y < 30}, and S3 = {R = (z,y) € E(F47)[30 <y < 47}. Begin-
ning the initial values Ry = (30,26), a9 = 1, andby = 0, pairs in the sequence
{(Rj, Ryj)} are generated.

R1, R2) = ((30, 26), (14, 9

(
. (

R3, R6

)

R2, R4)
) = ((20, 18), (30, 12
) =

( (
( (
( ( )
o (R4, R8) = ((28, 42), (30, 21))
e ( )
( )

R5, R10) = ((6, 17), (30, 21
((30, 21), (30, 21))

e (R6, R12) =

It is found that (R1, R2) = ((30,21),(30,21)) = (R6, R12). k is com-

puted to be ‘Zéz:bfg = g:ég = :—é =14 mod 41.
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