
RSA Cryptography: Factorization

Kevin Chu

3/11/10

Contents

1 Background 2
1.1 What is RSA? . 2
1.2 How it works . 2

2 Why is factorization hard? 3

3 What are some common factoring techniques? 4
3.1 Pollard’s p− 1 algorithm . 4
3.2 Elliptic curve factorization . 5

4 Alternatives to RSA? 5

1

Abstract

The purpose of this paper is to explore the topic of factorization
in RSA cryptography in greater detail as well as to bring up other
related problems and applications. This paper is organized according
to several questions I came up with regarding the topic.

1 Background

1.1 What is RSA?

RSA is a public key cryptography algorithm first introduced in 1978. It
is an interesting mathematical problem because the algorithm relies on
principles in number theory, making it an application of “pure” math.
It is also interesting because despite its simplicity, no one has man-
aged to prove that RSA or the underlying integer factorization prob-
lem cannot be cracked. RSA cryptography has become the standard
crypto-system in many areas due to the great demand for encryption
and certification on the internet. The basis for RSA cryptography is
the apparent difficulty in factoring large semi-primes. Although there
are many algorithms that can factor very large numbers of a certain
form, a general purpose algorithm is still unknown.

1.2 How it works

The general scheme of RSA is this:

1. Pick two large prime numbers p and q which are somewhat close
to each other.

2. Take n = p ∗ q the product.

3. Take φ(pq) = (p− 1)(q − 1).

4. Choose an integer e such that 1 < e < φ(pq), and gcd(e, φ(pq)) =
1.

5. Compute d such that de ≡ 1 (mod φ(pq))

We then release the public key (n, e) and keep the private key (n, d). A
message m, an integer 0 < m < n, can then be encrypted by computing
s ≡ me (mod n). To decrypt an encrypted message s, we can compute
m ≡ sd (mod n) which gives us our original message m.

From this scheme we can easily see that if we can factor n we will
get n = pq. Using this we can then compute de ≡ 1 (mod φ(pq)) which
gives us the private key (n, d).

2

2 Why is factorization hard?

It seems strange that something as simple as factorization should be
difficult to solve. The reason factorization remains a challenging prob-
lem is the size of numbers that are used in crypto-systems such as RSA.
Currently the largest number that has been factored is 768 bits (232
decimal digits). RSA keys are generally at least 1024 bits long (309 dec-
imal digits). What makes RSA an ideal algorithm for crypto-systems is
the inherent asymmetry between generating primes (polynomial time)
and factoring large semiprimes. As long as there is no general poly-
nomial time algorithm for factoring large numbers, RSA may remain
secure.

The factor() function in Sage can be used to show how difficult it
is to factor large numbers on a personal computer. Using the following
code we can see how long it takes to factor random numbers of various
lengths.

for a in range(1,20):
n = ZZ.random_element(a * 5)
timeit(‘factor(n)’)

The following output shows the runtime for factoring numbers from
50 digits to 100 digits on a laptop with a 2 GHz processor:

sage: n= ZZ.random_element(10^50)
sage: timeit(’factor(n)’)
25 loops, best of 3: 21.5 ms per loop

sage: n= ZZ.random_element(10^55)
sage: timeit(’factor(n)’)
5 loops, best of 3: 2.68 s per loop

sage: n= ZZ.random_element(10^60)
sage: timeit(’factor(n)’)
5 loops, best of 3: 2.13 s per loop

sage: n= ZZ.random_element(10^65)
sage: timeit(’factor(n)’)
5 loops, best of 3: 20.3 s per loop

sage: n= ZZ.random_element(10^70)
sage: timeit(’factor(n)’)
5 loops, best of 3: 3.93 s per loop

sage: n= ZZ.random_element(10^75)
sage: timeit(’factor(n)’)

3

5 loops, best of 3: 13.6 s per loop

sage: n= ZZ.random_element(10^80)
sage: timeit(’factor(n)’)
5 loops, best of 3: 12.1 s per loop

sage: n= ZZ.random_element(10^85)
sage: timeit(’factor(n)’)
5 loops, best of 3: 86.8 ms per loop

sage: n= ZZ.random_element(10^90)
sage: timeit(’factor(n)’)
5 loops, best of 3: 22.7 s per loop

sage: n= ZZ.random_element(10^95)
sage: timeit(’factor(n)’)
5 loops, best of 3: 1.87 s per loop

sage: n= ZZ.random_element(10^100)
sage: timeit(’factor(n)’)
5 loops, best of 3: 160 ms per loop

From this we can see that not all numbers of a given length take
the same amount of time to factor. For example a 100 digit number
took just 160 milliseconds to factor while a 65 digit number took 20.3
seconds. This suggests that certain numbers are harder to factor. In
practice, large semiprimes are the most difficult to factor. While this
data does not give an accurate heuristic of the runtime of a factoring
algorithm, it does give some insight as to the difficulty of factoring
very large numbers. If a 65 digit number takes 20 seconds to factor,
we can see that in practice, very large numbers (ie. 2048 bit or 617
digits) cannot be factored in a reasonable amount of time.

3 What are some common factoring tech-
niques?

3.1 Pollard’s p− 1 algorithm

One well known algorithm used to factor large numbers quickly is Pol-
lard’s (p − 1) algorithm. Pollard’s method relies on the fact that a
Number N with prime divisor p can be factored quickly if p − 1 is
“smooth” (ie, has small prime factors). In modern cryptography, Pol-
lard’s algorithm is not necessarily useful. Well designed crypto-systems

4

will choose numbers that do not work well.

3.2 Elliptic curve factorization

Elliptic curve factorization is an improvement on Pollard (p − 1) al-
gorithm. It replaces the restriction of only using the group (Z/pZ)∗

which always has order p − 1 and thus depends on having a factor p
such that p− 1 is smooth. Instead elliptic curve factorization uses the
group of points on a random elliptic curve.

4 Alternatives to RSA?

It is feasible that eventually someone will come up with an efficient
algorithm for factoring large numbers as this has not yet been proven
impossible. In that case RSA will be broken and there must be a
replacement. There are currently relatively few alternatives which are
as versatile as RSA in part due to the fact that RSA has withstood
years of testing in the real world. On the other hand it is also possible
that factorization is in the class np-hard. In this case, a polynomial
time algorithm for factorization is very unlikely as it would imply a
polynomial time algorithm to the whole class of problems.

5

