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1 Abstract

We will generalize both the Euclidean algorithm and a method of calculating continued fractions on
Euclidean domains. We will then use these methods to find the greatest common denominator and
continued fraction representation of p

q , where p, q are elements of the integers, Gaussian integers,
or polynomials over the rationals.

2 Introduction

In this section, we will define continued fractions and some other relevant concepts and introduce
notation.

2.1 Definitions and Notation

We begin immediately with a definition.

Definition 2.1.1. A continued fraction is an expression of the form

u0 +
1

u1 +
1

u2 +
1

u3 +
1

. . .

We will denote a continued fraction by [u0;u] = [u0;u1, u2, u3, . . . ], where u = (u1, u2, u3, . . . ).

Note that u0 may equal 0. In which case we may omit it. That is [0;u1, u2, u3, . . . ] = [u1, u2, u3, . . . ].
We may take [u] to be finite or infinite. In the case where [u] = [u1, u2, . . . , ur] is finite, it may be
simplified to a quotient. We call the denominator of this quotient the continuant of u and denote
it by |u| or |(u1, u2, . . . , ur)|. Further, we define u− = (u1, u2, . . . , ur−1), u− = (u2, u3, . . . , ur), and
{u} = (ur, ur−1, . . . , u2, u1). Finally, given [u], where u is finite with m components or infinite, the
rth partial convergent, where r < m, of [u] is the quotient pr

qr
such that [u0;u1, u2, . . . , ur] =

pr
qr
.

We will be primarily interested in finite continued fractions, so, unless stated otherwise, assume
any u is finite. We will also write uv to mean (u1, . . . , ur, v1, . . . , vr) [1].

2.2 Some Basic Results

Here we list and prove some simple results of our definitions. We will use that the partial convergents
can be expressed recursively, without proof1, as follows [2].

Proposition 2.2.1. Let the rth partial convergent of [u0;u] be
pr
qr
. Then

p−2 = 0, p−1 = 1, p0 = u0, . . . pr = urpr−1 + pr−2

q−2 = 1, q−1 = 0, q0 = 1, . . . qr = urqr−1 + qr−2

1For a proof, see Stein, Elementary Number Theory: Primes, Congruences, and Secrets.
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Proposition 2.2.2. Let u = (u1, u2, . . . , ur). Then

|u| =

∣∣∣∣∣∣∣∣∣∣∣

u1 1 0 0 · · · 0
−1 u2 1 0 · · · 0
0 −1 u3 1 · · · 0
...

...
...

...
. . .

...
0 0 0 0 · · · ur

∣∣∣∣∣∣∣∣∣∣∣
Proof. By our definitions, q1 = u1 and q2 = u2q1 + q0 = u2u1 +1, so proposition 2.2.2 clearly holds
for r = 1, 2. For odd r, by normal operations on determinants, we have

|u| =

∣∣∣∣∣∣∣∣∣∣∣

u1 1 0 0 · · · 0
−1 u2 1 0 · · · 0
0 −1 u3 1 · · · 0
...

...
...

...
. . .

...
0 0 0 0 · · · ur

∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣∣∣

0 0 0 0 · · · 0 −1 ur
u1 1 0 0 · · · 0 0 0
−1 u2 1 0 · · · 0 0 0
0 −1 u3 1 · · · 0 0 0
...

...
...

...
. . .

...
...

...
0 0 0 0 · · · −1 ur−1 1

∣∣∣∣∣∣∣∣∣∣∣∣∣
We evaluate the determinant on the top row. Since r is even, this gives

|u| = urqr−1 +

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

u1 1 0 · · · 0 0 0
−1 u2 1 · · · 0 0 0
0 −1 u3 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · ur−3 1 0
0 0 0 · · · −1 ur−2 0
0 0 0 · · · 0 −1 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= urqr−1 −

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 0 0 · · · 0 −1 1
u1 1 0 · · · 0 0 0
−1 u2 1 · · · 0 0 0
0 −1 u3 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · ur−3 1 0
0 0 0 · · · −1 ur−2 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
Evaluating again on the top row:

urqr−1 + qr−2 − 0 = urqr−1 + qr−2

Where we have used that since the far right column of the resulting determinant contains only 0’s,
the determinant is 0. This is the exact formula we had used to express the continuant in proposition
2.2.1.

We now prove a similar proposition for the numerator of a convergent.

Proposition 2.2.3. Let u = (u1, u2, . . . , ur). Then

pr = |u−|

Proof. This follows immediately from the recursion formula for pr, that u0 = 0, and from the proof
to proposition 2.2.2 [3].
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3 Continued Fractions and The Euclidean Algorithm

In this section we will generalize the Euclidean algorithm, the notion of a greatest common denom-
inator, and demonstrate the link between continued fractions and Euclidean domains.

3.1 The Euclidean Algorithm Over the Integers

We give the Euclidean algorithm for computing the greatest common divisor for two integers a, b.

Algorithm 3.1.1. Given a, b ∈ Z where a > b.

1. Since gcd(a, b) = gcd(|a|, |b|), assume a > b > 0. If a = b, return gcd(a, b) = b and terminate.
If b = 0, return gcd(a, b) = a and terminate.

2. Use long division to write a = bq + r where 0 ≤ r < b where q, r ∈ Z.

3. If r = 0, then b | a, return gcd(a, b) = b and terminate.

4. Set a = b and b = r, go to step 2.

This algorithm is only given as a convenience for the reader and will not be explicitly used. We
will use a more general version of the Euclidean algorithm. For a proof, see Stein [4].

3.2 The Euclidean Algorithm over Euclidean Domains

We first define a Euclidean domain.

Definition 3.2.1. A Euclidean domain is a commutative ring R with unit and no zero-divisor and
a map λ : R \ {0} → N such that given any a, b ∈ R, there exists q, r ∈ R such that r = 0 or
a = qb+ r where λ(r) < λ(b) and given a ̸= 0 and b ̸= 0, λ(a) ≤ λ(ab).

We will call λ a Euclidean valuation. The name Euclidean domain should be suggestive of
the purpose for considering such a ring—the Euclidean algorithm. This gives us a method of
calculating greatest common denominators in other Euclidean domains. Examples of Euclidean
domains include the Gaussian integers and polynomials over the integers or rationals. The Euclidean
algorithm holds over Euclidean domains with only minor changes [5].

Since any Euclidean domain is a ring, we can maintain the same meaning for an element d
dividing another element a.

Definition 3.2.2. Let E be a Euclidean domain and let a, d ∈ E. Then d | a if there exists c ∈ E
such that a = cd.

And we maintain a similar definition for the greatest common divisor.

Definition 3.2.3. Let E be a Euclidean domain and let a, b ∈ E. Then d ̸= 0 is the greatest
common divisor if both

1. d | a and d | b.
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2. If h | a and h | b, then h | d.

Note that the greatest common divisor always exists for because 1 always divides any element.
We now turn to the Euclidean algorithm over a Euclidean domain.

Algorithm 3.2.4. Let E be a Euclidean domain. Given a, b ∈ E, such that a, b ̸= 0 and where
λ(a) > λ(b).

1. If a = b, return gcd(a, b) = b and terminate. If b = 0, return gcd(a, b) = a and terminate.

2. Use the division algorithm to write a = bq + r where 0 ≤ λ(r) < λ(b) and q, r ∈ E.

3. If r = 0, then b | a, return gcd(a, b) = b and terminate.

4. If r ̸= 0, set a = b and b = r, go to step 2.

Proof. Since E is a Euclidean domain, we have a = bq + r. So a − bq = r. Let gcd(a, b) = d.
Since gcd(a, b) = gcd(a, b − na), we know gcd(a, b) = gcd(b, r). So step 4 does not change the
greatest common divisor. And since λ(r) < λ(b) each time the division algorithm is performed, the
algorithm will eventually terminate.

With algorithm 3.2.4 in hand, we (finally) write down a method of computing a continued
fraction. We will need to assume the Euclidean domain over which we are calculating the continued
fraction is a division ring. From this point on, we will reserve the letter E for Euclidean domains
that are division rings and λ for the Euclidean valuation associated with E. We are interested
in elements of E of the form p

q where p, q ∈ E, so we need to demonstrate that there is even a

continued fraction representation of p
q .

Theorem 3.2.5. Let p, q ∈ E such that q ̸= 0. Then there is a continued fraction representation
of p

q .

Proof. WLOG, assume gcd(p, q) = 1. We perform algorithm 3.2.4 with inputs p, q. We get the
chain

p = u0q + r1 0 < λ(r1) < λ(q)
q = u1r1 + r2 0 < λ(r2) < λ(r1)
r1 = u2r2 + r3 0 < λ(r3) < λ(r2)

...
rn−2 = un−1rn−1 + rn 0 < rn < rn−1

rn−1 = unrn + 0 0 < λ(rn) < λ(rn−1)

Dividing each line by the next (i.e., divide p = u0q + r1 by b, etc.) and rewriting it.

p
q = u0 +

r1
q = u0 +

1
q
r1

q
r1

= u1 +
r2
r1

= u1 +
1
r1
r2

...
rn−1

rn
= un
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Back substituting, we then get

p

q
= u0 +

1

u1 +
1

u2 +
1

. . . +
1

un

So p
q = [u0;u1, u2, . . . , un] [7].

Note that in the proof to theorem 3.2.5, we stumbled across an algorithm for calculating p
q .

Algorithm 3.2.6. Let p, q ∈ E where q ̸= 0 and gcd(p, q) = 1 and let p
q = [u0;u].

1. If q = 1, then u0 = p and terminate. Set i = 0.

2. Use the division algorithm to write p = uiq + ri+1 where 0 ≤ λ(ri+1) < λ(q). Store ui.

3. If ri = 0, output [u0; . . . , ui]

4. Set p← q and q ← ri, add 1 to i, go to step 2.

Proof. See the proof to theorem 3.2.5.

Note that finding the continued fraction representation involves the same process as the calcu-
lating the greatest common divisor except we are interested in the part that was thrown out—the
q in algorithm 3.2.4. Now that we are armed with a a method of calculating continued fractions in
a more general setting, let’s look at some of these settings.

4 Application: The Integers, Gaussian Integers, and Polynomials
over a Field

In this section, we will look at applying algorithms 3.2.4 and 3.2.6 to several Euclidean domains.

4.1 The Integers

The integers are clearly a commutative division ring. To make Z a Euclidean domain, we define
λ : Z \ {0} → N as λ(n) = |n|. As an example of the link between the Euclidean algorithm and
calculating continued fractions, we simultaneously perform 3.2.4 9261 and 1291 and 3.2.6 on 9261

1291 .
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9261 = 1291 × 7 + 224
1291 = 224 × 5 + 171
224 = 171 × 1 + 53
171 = 53 × 3 + 12
53 = 12 × 4 + 5
12 = 5 × 2 + 2
5 = 2 × 2 + 1
2 = 1 × 2 + 0

9261

1291
= 7+

1

5+
1

1+
1

3+
1

4+
1

2+
1

2+
1

2

So gcd(9261, 1291) = 1 and 9261
1291 = [7; 5, 1, 3, 4, 2, 2, 2].

4.2 The Gaussian Integers

We start with a definition.

Definition 4.2.1. The Gaussian integers is the set {a+ ib | a, b ∈ Z} where i =
√
−1.

It is now necessary to prove that the Gaussian integers are a Euclidean domain so we may use
the algorithms 3.2.4 and 3.2.6. But we must first find a Euclidean valuation λ. We will use the
notation z̄ to indicate the complex conjugate of z and we will also use the fact, without proof, that
the Gaussian integers are a commutative ring with no zero divisor.

Lemma 4.2.2. Let G be the Gaussian integers. If λ : G \ {0} → Z+ is defined λ(z) = zz̄, then λ
is a Euclidean valuation.

Proof. Let z1, z2 ∈ G such that z1 and z2 are nonzero, we have λ(z1z2) = z1z2z̄1z̄2 = z1z̄1z2z̄2 =
λ(z1)λ(z2). Since we are in the Gaussian integers, λ(z) ≥ 1. So λ(z1)λ(z2) ≥ λ(z1). So λ(z1) ≤
λ(z1z2).

We now prove that the Gaussian integers with λ from lemma 4.2.2 form a Euclidean domain.
We first need a lemma.

Theorem 4.2.3. The Gaussian integers with λ(z) = zz̄ are a Euclidean domain.

Proof. I make no attempt to reproduce the proof provided at Larry Freeman’s blog [7].

We now use algorithm 3.2.4 and 3.2.6 to find both the greatest common divisor and the continued
fraction representation of the complex numbers z1 = 112+313i and z2 = 254+108i. We then have
by algorithm 3.2.4 on z1 and z2 and algorithm 3.2.6 on z1

z2
.

112 + 313i = (254 + 108i) × (1+ i) + (−34 + 49i)
254 + 108i = (−34− 39i) × (−4+ 2i) + (20− 20i)
−34− 39i = (20− 20i) × (−2i) + (6− 9i)
20− 20i = (6− 9i) × (3+ i) + (−7 + i)

6− 9i = (−7 + i) × (−1+ i) + (−i)
−7 + i = (−i) × (−i− 7i) + 0

(1)
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112 + 313i

254 + 108i
=

15563

19045
+

33703

38090
i = 1+ i+

1

−4+ 2i+
1

−2i+
1

3+ i+
1

−1+ i+
1

−1− 7i

(2)

So gcd(112 + 313i, 254 + 108i) = −i or 1 and 112+313i
254+108i = [1 + i;−4 + 2i,−2i, 3 + i,−1 + i,−1− 7i].

4.3 Polynomials over the Rationals

We first define what we mean by polynomials over a field.

Definition 4.3.1. We define the polynomials F [x] over the field F as the set of all polynomials of
the form

a0 + a1x+ a2x
2 + · · ·+ anx

n

For n ≥ 0 where ai ∈ F for all integers i ≥ 0.

We define addition and multiplication of polynomials, and their inverses, in the familiar way
from high school algebra. It is easy to check that the polynomials over a field form a commutative
ring with no zero divisor. As was the case with the Gaussian integers, we will first find a map λ
that is a Euclidean valuation. In preparation for this, we introduce the degree map.

Definition 4.3.2. Let p(x) = a0 + a1x+ · · · anxn ∈ F [x]. We define the degree map of p(x) to be
equal to the order of the highest order of x in p(x). Explicitly, if an ̸= 0, then deg p(x) = n.

The degree map is just the degree of the polynomial as it was in high school algebra. We now
show that the degree map is a Euclidean valuation.

Lemma 4.3.3. Let F [x] be the ring of polynomials over the field F and let p(x) = a0+ a1x+ · · ·+
anx

n. Then the map λ(p(x)) = deg(p(x)) is a Euclidean valuation.

Proof. Let q(x) = b0+b1x+· · ·+bkx
k ∈ F [x] where bk ̸= 0. Then p(x)q(x) = a0b0+(a1b0+a0b1)x+

anbkx
n+k. So λp(x)q(x) = n + k > n = λp(x). If q(x) = b0 ̸= 0, then λp(x)q(x) = n = λp(x). So

we have shown λp(x) ≤ λp(x)q(x). So λ is a Euclidean valuation.

We now prove the ring of polynomials over a field form a Euclidean domain.

Theorem 4.3.4. The polynomial ring F [x] over a field F with Euclidean valuation λ as defined in
lemma 4.3.3 form a Euclidean domain.

7



Proof. We already know F [x] is a commutative ring with no zero divisor and λ is a Euclidean
valuation, so all we need prove is a division algorithm. Let f(x) = a0 + a1x + · · · + amxm ∈ F [x]
and g(x) = b0+ b1x+ · · ·+ bnx

n ∈ F [x] where am ̸= 0 and bn ̸= 0 and λ(f(x)) ≥ λ(g(x)). Consider

am
bn

xm−ng(x) =
am
bn

b0x
m−n +

am
bn

b1x
m−n+1 + · · ·+ amxm

Note that amxm is the same coefficient and same order as the highest order of f(x). So if h(x) =
f(x)− am

bn
xm−ng(x), then deg h(x) < deg f(x). Then, by induction,

h(x) = q1(x)g(x) + r(x)

Where q1(x), r(x) ∈ F [x] and r(x) = 0 or λ(r(x)) < λ(g(x)). So

h(x) = f(x)− am
bn

xm−ng(x) = q1(x)g(x) + r(x)

Solving for f(x):

f(x) =

(
am
bn

xm−n + q1(x)

)
g(x) + r(x) = q(x)g(x) + r(x)

Where q(x) = am
bn

xm−n+ q1(x). And since λ(g(x)) < λ(r(x)), we have proved1 a division algorithm
[9]. So F [x] with Euclidean valuation λ forms a Euclidean domain.

We now apply algorithm 3.2.4 and 3.2.6 on to find both the greatest common divisor of the
polynomials p(x) = 3x4+x2− 2x− 1 and q(x) = 2x2+1 and the continued fraction representation

of p(x)
q(x) .

3x4 + x2 − 2x− 1 = (2x2 + 1) ×
(
3
2x

2 − 1
4

)
+

(
−2x− 3

4

)
2x2 + 1 =

(
−2x− 3

4

)
×

(
−x+ 3

8

)
+ 41

32

−2x− 3
4 = 41

32 ×
(
−64

41x−
24
41

)
+ 0

(3)

3x4 + x2 − 2x− 1

2x2 + 1
=

3

2
x2 − 1

4
+

1

−x+ 3
8 +

1

−64
41x−

24
41

(4)

Though we did not discuss it, it should be noted that we will typically insist that the greatest
common divisor be monic. That is, the highest order term has coefficient 1 to ensure uniqueness.
In our example, this amounts to noting that since λ(4132) = 0, we then have gcd(p(x), q(x)) = 1 and
p(x)
q(x) = [32x

2 − 1
4 ;−x+ 3

8 ,−
64
41x−

24
41 ].

1This is taken from Abstract Algebra by Herstein and is presented here as a convenience to the reader.
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