Plotting an Elliptic Curve over a Finite Fields
{{{id=4| @interact def f(p=primes(3,100)): try: E = EllipticCurve(GF(p), [1,0]) show(E) show(E.plot(pointsize=45), gridlines=True) except Exception, msg: print "Not an elliptic curve!", msg ///
|
Not every point is on the curve:
{{{id=12| E([3,2]) /// Traceback (most recent call last): File "We define three generic points, then add them using both ways of associating.
{{{id=23| P1 = (x1,y1); P2 = (x2,y2); P3 = (x3,y3) Z = op(P1, op(P2,P3)); W = op(op(P1,P2),P3) /// }}}Unfortunately, these points have coordinates that are just polynomials, so, e.g., the relationship $y_1^2 = x_1^3 + ax_1 + b$ simply isn't taken into account. Thus $Z\neq W$. To take into the extra relationship between the $x_i$ and $y_i$, we create a quotient ring. This is just like how the integers modulo $n$ is a quotient ring, which takes into account the relation "$n = 0$".
We thus form the quotient polynomial ring with variables $x_i, y_i, a, b$, where $y_i^2 = x_i^3 +ax_i + b$. You can think of this as a ring that contains three generic points on the elliptic curve.
{{{id=31| Q = R.quotient(rels) show(Q) ///We then verify that the two points $(P_1 + P_2)+P_3$ and $P_1 + (P_2 + P_3)$ are equal, modulo the relations, hence proving the associative law.
The massive polynomial $f$ below is $0$ in the quotient ring precisely if the $x$-coordinates of the two points are equal, modulo the relations.
{{{id=37| f = Z[0].numerator()*W[0].denominator() - Z[0].denominator()*W[0].numerator(); f /// -2*x1^9*x2^4 + 8*x1^7*x2^6 - 12*x1^5*x2^8 + 8*x1^3*x2^10 - 2*x1*x2^12 + 8*x1^9*x2^3*x3 - 6*x1^8*x2^4*x3 - 24*x1^7*x2^5*x3 + 16*x1^6*x2^6*x3 + 24*x1^5*x2^7*x3 - 12*x1^4*x2^8*x3 - 8*x1^3*x2^9*x3 + 2*x2^12*x3 - 12*x1^9*x2^2*x3^2 + 24*x1^8*x2^3*x3^2 + 12*x1^7*x2^4*x3^2 - 48*x1^6*x2^5*x3^2 + 12*x1^5*x2^6*x3^2 + 24*x1^4*x2^7*x3^2 - 12*x1^3*x2^8*x3^2 + 8*x1^9*x2*x3^3 - 36*x1^8*x2^2*x3^3 + 32*x1^7*x2^3*x3^3 + 36*x1^6*x2^4*x3^3 - 48*x1^5*x2^5*x3^3 - 4*x1^4*x2^6*x3^3 + 12*x1^2*x2^8*x3^3 + 8*x1*x2^9*x3^3 - 8*x2^10*x3^3 - 2*x1^9*x3^4 + 24*x1^8*x2*x3^4 - 48*x1^7*x2^2*x3^4 + 16*x1^6*x2^3*x3^4 + 18*x1^5*x2^4*x3^4 + 4*x1^3*x2^6*x3^4 - 24*x1^2*x2^7*x3^4 + 12*x1*x2^8*x3^4 - 6*x1^8*x3^5 + 24*x1^7*x2*x3^5 - 24*x1^6*x2^2*x3^5 - 18*x1^4*x2^4*x3^5 + 48*x1^3*x2^5*x3^5 - 12*x1^2*x2^6*x3^5 - 24*x1*x2^7*x3^5 + 12*x2^8*x3^5 - 4*x1^7*x3^6 + 24*x1^5*x2^2*x3^6 - 16*x1^4*x2^3*x3^6 - 36*x1^3*x2^4*x3^6 + 48*x1^2*x2^5*x3^6 - 16*x1*x2^6*x3^6 + 4*x1^6*x3^7 - 24*x1^5*x2*x3^7 + 48*x1^4*x2^2*x3^7 - 32*x1^3*x2^3*x3^7 - 12*x1^2*x2^4*x3^7 + 24*x1*x2^5*x3^7 - 8*x2^6*x3^7 + 6*x1^5*x3^8 - 24*x1^4*x2*x3^8 + 36*x1^3*x2^2*x3^8 - 24*x1^2*x2^3*x3^8 + 6*x1*x2^4*x3^8 + 2*x1^4*x3^9 - 8*x1^3*x2*x3^9 + 12*x1^2*x2^2*x3^9 - 8*x1*x2^3*x3^9 + 2*x2^4*x3^9 + 5*x1^6*y1^2*x2^4 - 12*x1^4*y1^2*x2^6 + 9*x1^2*y1^2*x2^8 - 2*y1^2*x2^10 - 8*x1^6*y1*x2^4*y2 + 2*x1^5*y1*x2^5*y2 + 16*x1^4*y1*x2^6*y2 - 4*x1^3*y1*x2^7*y2 - 8*x1^2*y1*x2^8*y2 + 2*x1*y1*x2^9*y2 + 3*x1^8*x2^2*y2^2 - 4*x1^7*x2^3*y2^2 - 6*x1^6*x2^4*y2^2 + 12*x1^5*x2^5*y2^2 + 3*x1^4*x2^6*y2^2 - 12*x1^3*x2^7*y2^2 + 4*x1*x2^9*y2^2 - 20*x1^6*y1^2*x2^3*x3 + 12*x1^5*y1^2*x2^4*x3 + 36*x1^4*y1^2*x2^5*x3 - 18*x1^3*y1^2*x2^6*x3 - 18*x1^2*y1^2*x2^7*x3 + 6*x1*y1^2*x2^8*x3 + 2*y1^2*x2^9*x3 + 26*x1^6*y1*x2^3*y2*x3 - 16*x1^5*y1*x2^4*y2*x3 - 34*x1^4*y1*x2^5*y2*x3 + 12*x1^3*y1*x2^6*y2*x3 + 10*x1^2*y1*x2^7*y2*x3 + 4*x1*y1*x2^8*y2*x3 - 2*y1*x2^9*y2*x3 - 6*x1^8*x2*y2^2*x3 + 12*x1^7*x2^2*y2^2*x3 - 2*x1^6*x2^3*y2^2*x3 - 18*x1^5*x2^4*y2^2*x3 + 12*x1^4*x2^5*y2^2*x3 + 6*x1^3*x2^6*y2^2*x3 - 4*x2^9*y2^2*x3 + 30*x1^6*y1^2*x2^2*x3^2 - 48*x1^5*y1^2*x2^3*x3^2 - 18*x1^4*y1^2*x2^4*x3^2 + 54*x1^3*y1^2*x2^5*x3^2 - 9*x1^2*y1^2*x2^6*x3^2 - 12*x1*y1^2*x2^7*x3^2 + 3*y1^2*x2^8*x3^2 - 30*x1^6*y1*x2^2*y2*x3^2 + 44*x1^5*y1*x2^3*y2*x3^2 + 8*x1^4*y1*x2^4*y2*x3^2 - 22*x1^3*y1*x2^5*y2*x3^2 - 2*x1^2*y1*x2^6*y2*x3^2 - 2*x1*y1*x2^7*y2*x3^2 + 4*y1*x2^8*y2*x3^2 + 3*x1^8*y2^2*x3^2 - 12*x1^7*x2*y2^2*x3^2 + 21*x1^6*x2^2*y2^2*x3^2 - 6*x1^5*x2^3*y2^2*x3^2 - 18*x1^4*x2^4*y2^2*x3^2 + 12*x1^3*x2^5*y2^2*x3^2 - 20*x1^6*y1^2*x2*x3^3 + 72*x1^5*y1^2*x2^2*x3^3 - 48*x1^4*y1^2*x2^3*x3^3 - 40*x1^3*y1^2*x2^4*x3^3 + 36*x1^2*y1^2*x2^5*x3^3 + 14*x1^6*y1*x2*y2*x3^3 - 56*x1^5*y1*x2^2*y2*x3^3 + 24*x1^4*y1*x2^3*y2*x3^3 + 32*x1^3*y1*x2^4*y2*x3^3 + 14*x1^2*y1*x2^5*y2*x3^3 - 24*x1*y1*x2^6*y2*x3^3 - 4*y1*x2^7*y2*x3^3 + 4*x1^7*y2^2*x3^3 - 12*x1^6*x2*y2^2*x3^3 + 18*x1^5*x2^2*y2^2*x3^3 - 4*x1^4*x2^3*y2^2*x3^3 - 12*x1^2*x2^5*y2^2*x3^3 - 6*x1*x2^6*y2^2*x3^3 + 12*x2^7*y2^2*x3^3 + 5*x1^6*y1^2*x3^4 - 48*x1^5*y1^2*x2*x3^4 + 72*x1^4*y1^2*x2^2*x3^4 - 20*x1^3*y1^2*x2^3*x3^4 - 12*x1^2*y1^2*x2^4*x3^4 + 6*x1*y1^2*x2^5*x3^4 - 3*y1^2*x2^6*x3^4 - 2*x1^6*y1*y2*x3^4 + 34*x1^5*y1*x2*y2*x3^4 - 20*x1^4*y1*x2^2*y2*x3^4 - 32*x1^3*y1*x2^3*y2*x3^4 - 4*x1^2*y1*x2^4*y2*x3^4 + 26*x1*y1*x2^5*y2*x3^4 - 2*y1*x2^6*y2*x3^4 - x1^6*y2^2*x3^4 - 6*x1^5*x2*y2^2*x3^4 + 4*x1^3*x2^3*y2^2*x3^4 + 18*x1^2*x2^4*y2^2*x3^4 - 12*x1*x2^5*y2^2*x3^4 - 3*x2^6*y2^2*x3^4 + 12*x1^5*y1^2*x3^5 - 36*x1^4*y1^2*x2*x3^5 + 30*x1^3*y1^2*x2^2*x3^5 - 6*x1^2*y1^2*x2^3*x3^5 + 6*x1*y1^2*x2^4*x3^5 - 6*y1^2*x2^5*x3^5 - 8*x1^5*y1*y2*x3^5 + 10*x1^4*y1*x2*y2*x3^5 + 28*x1^3*y1*x2^2*y2*x3^5 - 40*x1^2*y1*x2^3*y2*x3^5 - 4*x1*y1*x2^4*y2*x3^5 + 14*y1*x2^5*y2*x3^5 + 6*x1^4*x2*y2^2*x3^5 - 18*x1^3*x2^2*y2^2*x3^5 + 6*x1^2*x2^3*y2^2*x3^5 + 18*x1*x2^4*y2^2*x3^5 - 12*x2^5*y2^2*x3^5 + 6*x1^4*y1^2*x3^6 - 2*x1^3*y1^2*x2*x3^6 - 9*x1^2*y1^2*x2^2*x3^6 + 5*y1^2*x2^4*x3^6 - 4*x1^4*y1*y2*x3^6 - 22*x1^3*y1*x2*y2*x3^6 + 48*x1^2*y1*x2^2*y2*x3^6 - 14*x1*y1*x2^3*y2*x3^6 - 8*y1*x2^4*y2*x3^6 + x1^4*y2^2*x3^6 + 12*x1^3*x2*y2^2*x3^6 - 21*x1^2*x2^2*y2^2*x3^6 + 2*x1*x2^3*y2^2*x3^6 + 6*x2^4*y2^2*x3^6 - 4*x1^3*y1^2*x3^7 + 12*x1^2*y1^2*x2*x3^7 - 12*x1*y1^2*x2^2*x3^7 + 4*y1^2*x2^3*x3^7 + 8*x1^3*y1*y2*x3^7 - 24*x1^2*y1*x2*y2*x3^7 + 24*x1*y1*x2^2*y2*x3^7 - 8*y1*x2^3*y2*x3^7 - 4*x1^3*y2^2*x3^7 + 12*x1^2*x2*y2^2*x3^7 - 12*x1*x2^2*y2^2*x3^7 + 4*x2^3*y2^2*x3^7 - 3*x1^2*y1^2*x3^8 + 6*x1*y1^2*x2*x3^8 - 3*y1^2*x2^2*x3^8 + 6*x1^2*y1*y2*x3^8 - 12*x1*y1*x2*y2*x3^8 + 6*y1*x2^2*y2*x3^8 - 3*x1^2*y2^2*x3^8 + 6*x1*x2*y2^2*x3^8 - 3*x2^2*y2^2*x3^8 + 6*x1^6*y1*x2^4*y3 - 6*x1^5*y1*x2^5*y3 - 12*x1^4*y1*x2^6*y3 + 12*x1^3*y1*x2^7*y3 + 6*x1^2*y1*x2^8*y3 - 6*x1*y1*x2^9*y3 - 6*x1^8*x2^2*y2*y3 + 8*x1^7*x2^3*y2*y3 + 8*x1^6*x2^4*y2*y3 - 14*x1^5*x2^5*y2*y3 + 2*x1^4*x2^6*y2*y3 + 4*x1^3*x2^7*y2*y3 - 4*x1^2*x2^8*y2*y3 + 2*x1*x2^9*y2*y3 - 18*x1^6*y1*x2^3*x3*y3 + 24*x1^5*y1*x2^4*x3*y3 + 18*x1^4*y1*x2^5*x3*y3 - 24*x1^3*y1*x2^6*x3*y3 - 6*x1^2*y1*x2^7*x3*y3 + 6*y1*x2^9*x3*y3 + 12*x1^8*x2*y2*x3*y3 - 24*x1^7*x2^2*y2*x3*y3 + 14*x1^6*x2^3*y2*x3*y3 + 4*x1^5*x2^4*y2*x3*y3 - 26*x1^4*x2^5*y2*x3*y3 + 24*x1^3*x2^6*y2*x3*y3 + 2*x1^2*x2^7*y2*x3*y3 - 4*x1*x2^8*y2*x3*y3 - 2*x2^9*y2*x3*y3 + 18*x1^6*y1*x2^2*x3^2*y3 - 36*x1^5*y1*x2^3*x3^2*y3 + 12*x1^4*y1*x2^4*x3^2*y3 + 6*x1^3*y1*x2^5*x3^2*y3 + 6*x1*y1*x2^7*x3^2*y3 - 6*y1*x2^8*x3^2*y3 - 6*x1^8*y2*x3^2*y3 + 24*x1^7*x2*y2*x3^2*y3 - 48*x1^6*x2^2*y2*x3^2*y3 + 40*x1^5*x2^3*y2*x3^2*y3 + 4*x1^4*x2^4*y2*x3^2*y3 - 14*x1^3*x2^5*y2*x3^2*y3 + 2*x1^2*x2^6*y2*x3^2*y3 - 10*x1*x2^7*y2*x3^2*y3 + 8*x2^8*y2*x3^2*y3 - 6*x1^6*y1*x2*x3^3*y3 + 24*x1^5*y1*x2^2*x3^3*y3 - 24*x1^4*y1*x2^3*x3^3*y3 - 6*x1^2*y1*x2^5*x3^3*y3 + 24*x1*y1*x2^6*x3^3*y3 - 12*y1*x2^7*x3^3*y3 - 8*x1^7*y2*x3^3*y3 + 22*x1^6*x2*y2*x3^3*y3 - 28*x1^5*x2^2*y2*x3^3*y3 + 32*x1^4*x2^3*y2*x3^3*y3 - 32*x1^3*x2^4*y2*x3^3*y3 + 22*x1^2*x2^5*y2*x3^3*y3 - 12*x1*x2^6*y2*x3^3*y3 + 4*x2^7*y2*x3^3*y3 - 6*x1^5*y1*x2*x3^4*y3 + 24*x1^3*y1*x2^3*x3^4*y3 - 12*x1^2*y1*x2^4*x3^4*y3 - 18*x1*y1*x2^5*x3^4*y3 + 12*y1*x2^6*x3^4*y3 + 4*x1^6*y2*x3^4*y3 - 10*x1^5*x2*y2*x3^4*y3 + 20*x1^4*x2^2*y2*x3^4*y3 - 24*x1^3*x2^3*y2*x3^4*y3 - 8*x1^2*x2^4*y2*x3^4*y3 + 34*x1*x2^5*y2*x3^4*y3 - 16*x2^6*y2*x3^4*y3 + 6*x1^4*y1*x2*x3^5*y3 - 24*x1^3*y1*x2^2*x3^5*y3 + 36*x1^2*y1*x2^3*x3^5*y3 - 24*x1*y1*x2^4*x3^5*y3 + 6*y1*x2^5*x3^5*y3 + 8*x1^5*y2*x3^5*y3 - 34*x1^4*x2*y2*x3^5*y3 + 56*x1^3*x2^2*y2*x3^5*y3 - 44*x1^2*x2^3*y2*x3^5*y3 + 16*x1*x2^4*y2*x3^5*y3 - 2*x2^5*y2*x3^5*y3 + 6*x1^3*y1*x2*x3^6*y3 - 18*x1^2*y1*x2^2*x3^6*y3 + 18*x1*y1*x2^3*x3^6*y3 - 6*y1*x2^4*x3^6*y3 + 2*x1^4*y2*x3^6*y3 - 14*x1^3*x2*y2*x3^6*y3 + 30*x1^2*x2^2*y2*x3^6*y3 - 26*x1*x2^3*y2*x3^6*y3 + 8*x2^4*y2*x3^6*y3 + 3*x1^8*x2^2*y3^2 - 4*x1^7*x2^3*y3^2 - 5*x1^6*x2^4*y3^2 + 6*x1^5*x2^5*y3^2 + 3*x1^4*x2^6*y3^2 - 3*x1^2*x2^8*y3^2 - 2*x1*x2^9*y3^2 + 2*x2^10*y3^2 - 6*x1^8*x2*x3*y3^2 + 12*x1^7*x2^2*x3*y3^2 - 6*x1^5*x2^4*x3*y3^2 - 6*x1^4*x2^5*x3*y3^2 + 12*x1^2*x2^7*x3*y3^2 - 6*x1*x2^8*x3*y3^2 + 3*x1^8*x3^2*y3^2 - 12*x1^7*x2*x3^2*y3^2 + 9*x1^6*x2^2*x3^2*y3^2 + 6*x1^5*x2^3*x3^2*y3^2 + 12*x1^4*x2^4*x3^2*y3^2 - 36*x1^3*x2^5*x3^2*y3^2 + 9*x1^2*x2^6*x3^2*y3^2 + 18*x1*x2^7*x3^2*y3^2 - 9*x2^8*x3^2*y3^2 + 4*x1^7*x3^3*y3^2 + 2*x1^6*x2*x3^3*y3^2 - 30*x1^5*x2^2*x3^3*y3^2 + 20*x1^4*x2^3*x3^3*y3^2 + 40*x1^3*x2^4*x3^3*y3^2 - 54*x1^2*x2^5*x3^3*y3^2 + 18*x1*x2^6*x3^3*y3^2 - 6*x1^6*x3^4*y3^2 + 36*x1^5*x2*x3^4*y3^2 - 72*x1^4*x2^2*x3^4*y3^2 + 48*x1^3*x2^3*x3^4*y3^2 + 18*x1^2*x2^4*x3^4*y3^2 - 36*x1*x2^5*x3^4*y3^2 + 12*x2^6*x3^4*y3^2 - 12*x1^5*x3^5*y3^2 + 48*x1^4*x2*x3^5*y3^2 - 72*x1^3*x2^2*x3^5*y3^2 + 48*x1^2*x2^3*x3^5*y3^2 - 12*x1*x2^4*x3^5*y3^2 - 5*x1^4*x3^6*y3^2 + 20*x1^3*x2*x3^6*y3^2 - 30*x1^2*x2^2*x3^6*y3^2 + 20*x1*x2^3*x3^6*y3^2 - 5*x2^4*x3^6*y3^2 - 4*x1^3*y1^4*x2^4 + 4*x1*y1^4*x2^6 + 14*x1^3*y1^3*x2^4*y2 - 2*x1^2*y1^3*x2^5*y2 - 14*x1*y1^3*x2^6*y2 + 2*y1^3*x2^7*y2 - 6*x1^5*y1^2*x2^2*y2^2 + 6*x1^4*y1^2*x2^3*y2^2 - 4*x1^3*y1^2*x2^4*y2^2 - 8*x1^2*y1^2*x2^5*y2^2 + 10*x1*y1^2*x2^6*y2^2 + 2*y1^2*x2^7*y2^2 + 2*x1^6*y1*x2*y2^3 + 4*x1^5*y1*x2^2*y2^3 - 14*x1^4*y1*x2^3*y2^3 + 6*x1^3*y1*x2^4*y2^3 + 12*x1^2*y1*x2^5*y2^3 - 10*x1*y1*x2^6*y2^3 + 16*x1^3*y1^4*x2^3*x3 - 6*x1^2*y1^4*x2^4*x3 - 12*x1*y1^4*x2^5*x3 + 2*y1^4*x2^6*x3 - 44*x1^3*y1^3*x2^3*y2*x3 + 16*x1^2*y1^3*x2^4*y2*x3 + 28*x1*y1^3*x2^5*y2*x3 + 12*x1^5*y1^2*x2*y2^2*x3 - 18*x1^4*y1^2*x2^2*y2^2*x3 + 28*x1^3*y1^2*x2^3*y2^2*x3 + 10*x1^2*y1^2*x2^4*y2^2*x3 - 20*x1*y1^2*x2^5*y2^2*x3 - 12*y1^2*x2^6*y2^2*x3 - 2*x1^6*y1*y2^3*x3 - 8*x1^5*y1*x2*y2^3*x3 + 22*x1^4*y1*x2^2*y2^3*x3 - 16*x1^3*y1*x2^3*y2^3*x3 - 6*x1^2*y1*x2^4*y2^3*x3 + 10*y1*x2^6*y2^3*x3 - 24*x1^3*y1^4*x2^2*x3^2 + 24*x1^2*y1^4*x2^3*x3^2 + 6*x1*y1^4*x2^4*x3^2 - 6*y1^4*x2^5*x3^2 + 48*x1^3*y1^3*x2^2*y2*x3^2 - 44*x1^2*y1^3*x2^3*y2*x3^2 - 2*x1*y1^3*x2^4*y2*x3^2 - 2*y1^3*x2^5*y2*x3^2 - 6*x1^5*y1^2*y2^2*x3^2 + 18*x1^4*y1^2*x2*y2^2*x3^2 - 36*x1^3*y1^2*x2^2*y2^2*x3^2 + 4*x1^2*y1^2*x2^3*y2^2*x3^2 + 4*x1*y1^2*x2^4*y2^2*x3^2 + 16*y1^2*x2^5*y2^2*x3^2 + 4*x1^5*y1*y2^3*x3^2 - 14*x1^4*y1*x2*y2^3*x3^2 + 16*x1^3*y1*x2^2*y2^3*x3^2 + 6*x1*y1*x2^4*y2^3*x3^2 - 12*y1*x2^5*y2^3*x3^2 + 16*x1^3*y1^4*x2*x3^3 - 36*x1^2*y1^4*x2^2*x3^3 + 16*x1*y1^4*x2^3*x3^3 + 4*y1^4*x2^4*x3^3 - 20*x1^3*y1^3*x2*y2*x3^3 + 56*x1^2*y1^3*x2^2*y2*x3^3 - 28*x1*y1^3*x2^3*y2*x3^3 - 8*y1^3*x2^4*y2*x3^3 - 6*x1^4*y1^2*y2^2*x3^3 + 4*x1^3*y1^2*x2*y2^2*x3^3 - 4*x1^2*y1^2*x2^2*y2^2*x3^3 - 4*x1*y1^2*x2^3*y2^2*x3^3 + 10*y1^2*x2^4*y2^2*x3^3 + 6*x1^4*y1*y2^3*x3^3 - 16*x1^2*y1*x2^2*y2^3*x3^3 + 16*x1*y1*x2^3*y2^3*x3^3 - 6*y1*x2^4*y2^3*x3^3 - 4*x1^3*y1^4*x3^4 + 24*x1^2*y1^4*x2*x3^4 - 24*x1*y1^4*x2^2*x3^4 + 4*y1^4*x2^3*x3^4 + 2*x1^3*y1^3*y2*x3^4 - 34*x1^2*y1^3*x2*y2*x3^4 + 26*x1*y1^3*x2^2*y2*x3^4 + 6*y1^3*x2^3*y2*x3^4 + 8*x1^3*y1^2*y2^2*x3^4 - 4*x1^2*y1^2*x2*y2^2*x3^4 + 20*x1*y1^2*x2^2*y2^2*x3^4 - 24*y1^2*x2^3*y2^2*x3^4 - 6*x1^3*y1*y2^3*x3^4 + 14*x1^2*y1*x2*y2^3*x3^4 - 22*x1*y1*x2^2*y2^3*x3^4 + 14*y1*x2^3*y2^3*x3^4 - 6*x1^2*y1^4*x3^5 + 12*x1*y1^4*x2*x3^5 - 6*y1^4*x2^2*x3^5 + 8*x1^2*y1^3*y2*x3^5 - 16*x1*y1^3*x2*y2*x3^5 + 8*y1^3*x2^2*y2*x3^5 + 2*x1^2*y1^2*y2^2*x3^5 - 4*x1*y1^2*x2*y2^2*x3^5 + 2*y1^2*x2^2*y2^2*x3^5 - 4*x1^2*y1*y2^3*x3^5 + 8*x1*y1*x2*y2^3*x3^5 - 4*y1*x2^2*y2^3*x3^5 - 2*x1*y1^4*x3^6 + 2*y1^4*x2*x3^6 + 6*x1*y1^3*y2*x3^6 - 6*y1^3*x2*y2*x3^6 - 6*x1*y1^2*y2^2*x3^6 + 6*y1^2*x2*y2^2*x3^6 + 2*x1*y1*y2^3*x3^6 - 2*y1*x2*y2^3*x3^6 - 10*x1^3*y1^3*x2^4*y3 + 6*x1^2*y1^3*x2^5*y3 + 10*x1*y1^3*x2^6*y3 - 6*y1^3*x2^7*y3 + 12*x1^5*y1^2*x2^2*y2*y3 - 12*x1^4*y1^2*x2^3*y2*y3 + 2*x1^3*y1^2*x2^4*y2*y3 + 10*x1^2*y1^2*x2^5*y2*y3 - 14*x1*y1^2*x2^6*y2*y3 + 2*y1^2*x2^7*y2*y3 - 6*x1^6*y1*x2*y2^2*y3 - 8*x1^5*y1*x2^2*y2^2*y3 + 30*x1^4*y1*x2^3*y2^2*y3 - 14*x1^3*y1*x2^4*y2^2*y3 - 24*x1^2*y1*x2^5*y2^2*y3 + 22*x1*y1*x2^6*y2^2*y3 + 2*x1^6*x2*y2^3*y3 + 4*x1^5*x2^2*y2^3*y3 - 14*x1^4*x2^3*y2^3*y3 + 6*x1^3*x2^4*y2^3*y3 + 12*x1^2*x2^5*y2^3*y3 - 10*x1*x2^6*y2^3*y3 + 28*x1^3*y1^3*x2^3*x3*y3 - 24*x1^2*y1^3*x2^4*x3*y3 - 12*x1*y1^3*x2^5*x3*y3 + 8*y1^3*x2^6*x3*y3 - 24*x1^5*y1^2*x2*y2*x3*y3 + 36*x1^4*y1^2*x2^2*y2*x3*y3 - 44*x1^3*y1^2*x2^3*y2*x3*y3 + 4*x1^2*y1^2*x2^4*y2*x3*y3 + 28*x1*y1^2*x2^5*y2*x3*y3 + 6*x1^6*y1*y2^2*x3*y3 + 16*x1^5*y1*x2*y2^2*x3*y3 - 38*x1^4*y1*x2^2*y2^2*x3*y3 + 32*x1^3*y1*x2^3*y2^2*x3*y3 + 6*x1^2*y1*x2^4*y2^2*x3*y3 - 22*y1*x2^6*y2^2*x3*y3 - 2*x1^6*y2^3*x3*y3 - 8*x1^5*x2*y2^3*x3*y3 + 22*x1^4*x2^2*y2^3*x3*y3 - 16*x1^3*x2^3*y2^3*x3*y3 - 6*x1^2*x2^4*y2^3*x3*y3 + 10*x2^6*y2^3*x3*y3 - 24*x1^3*y1^3*x2^2*x3^2*y3 + 36*x1^2*y1^3*x2^3*x3^2*y3 - 18*x1*y1^3*x2^4*x3^2*y3 + 6*y1^3*x2^5*x3^2*y3 + 12*x1^5*y1^2*y2*x3^2*y3 - 36*x1^4*y1^2*x2*y2*x3^2*y3 + 72*x1^3*y1^2*x2^2*y2*x3^2*y3 - 44*x1^2*y1^2*x2^3*y2*x3^2*y3 + 10*x1*y1^2*x2^4*y2*x3^2*y3 - 14*y1^2*x2^5*y2*x3^2*y3 - 8*x1^5*y1*y2^2*x3^2*y3 + 22*x1^4*y1*x2*y2^2*x3^2*y3 - 32*x1^3*y1*x2^2*y2^2*x3^2*y3 - 6*x1*y1*x2^4*y2^2*x3^2*y3 + 24*y1*x2^5*y2^2*x3^2*y3 + 4*x1^5*y2^3*x3^2*y3 - 14*x1^4*x2*y2^3*x3^2*y3 + 16*x1^3*x2^2*y2^3*x3^2*y3 + 6*x1*x2^4*y2^3*x3^2*y3 - 12*x2^5*y2^3*x3^2*y3 + 4*x1^3*y1^3*x2*x3^3*y3 - 24*x1^2*y1^3*x2^2*x3^3*y3 + 28*x1*y1^3*x2^3*x3^3*y3 - 8*y1^3*x2^4*x3^3*y3 + 12*x1^4*y1^2*y2*x3^3*y3 - 20*x1^3*y1^2*x2*y2*x3^3*y3 + 32*x1^2*y1^2*x2^2*y2*x3^3*y3 - 28*x1*y1^2*x2^3*y2*x3^3*y3 + 4*y1^2*x2^4*y2*x3^3*y3 - 14*x1^4*y1*y2^2*x3^3*y3 + 32*x1^2*y1*x2^2*y2^2*x3^3*y3 - 32*x1*y1*x2^3*y2^2*x3^3*y3 + 14*y1*x2^4*y2^2*x3^3*y3 + 6*x1^4*y2^3*x3^3*y3 - 16*x1^2*x2^2*y2^3*x3^3*y3 + 16*x1*x2^3*y2^3*x3^3*y3 - 6*x2^4*y2^3*x3^3*y3 + 2*x1^3*y1^3*x3^4*y3 + 6*x1^2*y1^3*x2*x3^4*y3 - 6*x1*y1^3*x2^2*x3^4*y3 - 2*y1^3*x2^3*x3^4*y3 - 10*x1^3*y1^2*y2*x3^4*y3 + 2*x1^2*y1^2*x2*y2*x3^4*y3 - 10*x1*y1^2*x2^2*y2*x3^4*y3 + 18*y1^2*x2^3*y2*x3^4*y3 + 14*x1^3*y1*y2^2*x3^4*y3 - 22*x1^2*y1*x2*y2^2*x3^4*y3 + 38*x1*y1*x2^2*y2^2*x3^4*y3 - 30*y1*x2^3*y2^2*x3^4*y3 - 6*x1^3*y2^3*x3^4*y3 + 14*x1^2*x2*y2^3*x3^4*y3 - 22*x1*x2^2*y2^3*x3^4*y3 + 14*x2^3*y2^3*x3^4*y3 - 4*x1^2*y1^2*y2*x3^5*y3 + 8*x1*y1^2*x2*y2*x3^5*y3 - 4*y1^2*x2^2*y2*x3^5*y3 + 8*x1^2*y1*y2^2*x3^5*y3 - 16*x1*y1*x2*y2^2*x3^5*y3 + 8*y1*x2^2*y2^2*x3^5*y3 - 4*x1^2*y2^3*x3^5*y3 + 8*x1*x2*y2^3*x3^5*y3 - 4*x2^2*y2^3*x3^5*y3 - 2*x1*y1^3*x3^6*y3 + 2*y1^3*x2*x3^6*y3 + 6*x1*y1^2*y2*x3^6*y3 - 6*y1^2*x2*y2*x3^6*y3 - 6*x1*y1*y2^2*x3^6*y3 + 6*y1*x2*y2^2*x3^6*y3 + 2*x1*y2^3*x3^6*y3 - 2*x2*y2^3*x3^6*y3 - 6*x1^5*y1^2*x2^2*y3^2 + 6*x1^4*y1^2*x2^3*y3^2 + 6*x1^3*y1^2*x2^4*y3^2 - 6*x1^2*y1^2*x2^5*y3^2 + 6*x1^6*y1*x2*y2*y3^2 + 4*x1^5*y1*x2^2*y2*y3^2 - 18*x1^4*y1*x2^3*y2*y3^2 - 4*x1^3*y1*x2^4*y2*y3^2 + 14*x1^2*y1*x2^5*y2*y3^2 - 2*y1*x2^7*y2*y3^2 - 6*x1^6*x2*y2^2*y3^2 - 2*x1^5*x2^2*y2^2*y3^2 + 24*x1^4*x2^3*y2^2*y3^2 - 10*x1^3*x2^4*y2^2*y3^2 - 16*x1^2*x2^5*y2^2*y3^2 + 12*x1*x2^6*y2^2*y3^2 - 2*x2^7*y2^2*y3^2 + 12*x1^5*y1^2*x2*x3*y3^2 - 18*x1^4*y1^2*x2^2*x3*y3^2 + 6*x1^2*y1^2*x2^4*x3*y3^2 - 6*x1^6*y1*y2*x3*y3^2 - 8*x1^5*y1*x2*y2*x3*y3^2 + 10*x1^4*y1*x2^2*y2*x3*y3^2 + 28*x1^3*y1*x2^3*y2*x3*y3^2 - 10*x1^2*y1*x2^4*y2*x3*y3^2 - 28*x1*y1*x2^5*y2*x3*y3^2 + 14*y1*x2^6*y2*x3*y3^2 + 6*x1^6*y2^2*x3*y3^2 + 4*x1^5*x2*y2^2*x3*y3^2 - 20*x1^4*x2^2*y2^2*x3*y3^2 + 4*x1^3*x2^3*y2^2*x3*y3^2 - 4*x1^2*x2^4*y2^2*x3*y3^2 + 20*x1*x2^5*y2^2*x3*y3^2 - 10*x2^6*y2^2*x3*y3^2 - 6*x1^5*y1^2*x3^2*y3^2 + 18*x1^4*y1^2*x2*x3^2*y3^2 - 12*x1^3*y1^2*x2^2*x3^2*y3^2 - 6*x1*y1^2*x2^4*x3^2*y3^2 + 6*y1^2*x2^5*x3^2*y3^2 + 4*x1^5*y1*y2*x3^2*y3^2 - 2*x1^4*y1*x2*y2*x3^2*y3^2 - 32*x1^3*y1*x2^2*y2*x3^2*y3^2 + 44*x1^2*y1*x2^3*y2*x3^2*y3^2 - 4*x1*y1*x2^4*y2*x3^2*y3^2 - 10*y1*x2^5*y2*x3^2*y3^2 - 2*x1^5*y2^2*x3^2*y3^2 + 4*x1^4*x2*y2^2*x3^2*y3^2 + 4*x1^3*x2^2*y2^2*x3^2*y3^2 - 4*x1^2*x2^3*y2^2*x3^2*y3^2 - 10*x1*x2^4*y2^2*x3^2*y3^2 + 8*x2^5*y2^2*x3^2*y3^2 - 6*x1^4*y1^2*x3^3*y3^2 + 12*x1^2*y1^2*x2^2*x3^3*y3^2 - 6*y1^2*x2^4*x3^3*y3^2 + 10*x1^4*y1*y2*x3^3*y3^2 + 20*x1^3*y1*x2*y2*x3^3*y3^2 - 72*x1^2*y1*x2^2*y2*x3^3*y3^2 + 44*x1*y1*x2^3*y2*x3^3*y3^2 - 2*y1*x2^4*y2*x3^3*y3^2 - 8*x1^4*y2^2*x3^3*y3^2 - 4*x1^3*x2*y2^2*x3^3*y3^2 + 36*x1^2*x2^2*y2^2*x3^3*y3^2 - 28*x1*x2^3*y2^2*x3^3*y3^2 + 4*x2^4*y2^2*x3^3*y3^2 + 6*x1^3*y1^2*x3^4*y3^2 - 18*x1^2*y1^2*x2*x3^4*y3^2 + 18*x1*y1^2*x2^2*x3^4*y3^2 - 6*y1^2*x2^3*x3^4*y3^2 - 12*x1^3*y1*y2*x3^4*y3^2 + 36*x1^2*y1*x2*y2*x3^4*y3^2 - 36*x1*y1*x2^2*y2*x3^4*y3^2 + 12*y1*x2^3*y2*x3^4*y3^2 + 6*x1^3*y2^2*x3^4*y3^2 - 18*x1^2*x2*y2^2*x3^4*y3^2 + 18*x1*x2^2*y2^2*x3^4*y3^2 - 6*x2^3*y2^2*x3^4*y3^2 + 6*x1^2*y1^2*x3^5*y3^2 - 12*x1*y1^2*x2*x3^5*y3^2 + 6*y1^2*x2^2*x3^5*y3^2 - 12*x1^2*y1*y2*x3^5*y3^2 + 24*x1*y1*x2*y2*x3^5*y3^2 - 12*y1*x2^2*y2*x3^5*y3^2 + 6*x1^2*y2^2*x3^5*y3^2 - 12*x1*x2*y2^2*x3^5*y3^2 + 6*x2^2*y2^2*x3^5*y3^2 - 2*x1^6*y1*x2*y3^3 + 2*x1^4*y1*x2^3*y3^3 + 8*x1^3*y1*x2^4*y3^3 - 6*x1^2*y1*x2^5*y3^3 - 8*x1*y1*x2^6*y3^3 + 6*y1*x2^7*y3^3 + 6*x1^6*x2*y2*y3^3 - 8*x1^5*x2^2*y2*y3^3 - 6*x1^4*x2^3*y2*y3^3 + 8*x1^3*x2^4*y2*y3^3 + 2*x1^2*x2^5*y2*y3^3 - 2*x2^7*y2*y3^3 + 2*x1^6*y1*x3*y3^3 + 6*x1^4*y1*x2^2*x3*y3^3 - 28*x1^3*y1*x2^3*x3*y3^3 + 18*x1^2*y1*x2^4*x3*y3^3 + 12*x1*y1*x2^5*x3*y3^3 - 10*y1*x2^6*x3*y3^3 - 6*x1^6*y2*x3*y3^3 + 16*x1^5*x2*y2*x3*y3^3 - 26*x1^4*x2^2*y2*x3*y3^3 + 28*x1^3*x2^3*y2*x3*y3^3 + 2*x1^2*x2^4*y2*x3*y3^3 - 28*x1*x2^5*y2*x3*y3^3 + 14*x2^6*y2*x3*y3^3 - 6*x1^4*y1*x2*x3^2*y3^3 + 24*x1^3*y1*x2^2*x3^2*y3^3 - 36*x1^2*y1*x2^3*x3^2*y3^3 + 24*x1*y1*x2^4*x3^2*y3^3 - 6*y1*x2^5*x3^2*y3^3 - 8*x1^5*y2*x3^2*y3^3 + 34*x1^4*x2*y2*x3^2*y3^3 - 56*x1^3*x2^2*y2*x3^2*y3^3 + 44*x1^2*x2^3*y2*x3^2*y3^3 - 16*x1*x2^4*y2*x3^2*y3^3 + 2*x2^5*y2*x3^2*y3^3 - 2*x1^4*y1*x3^3*y3^3 - 4*x1^3*y1*x2*x3^3*y3^3 + 24*x1^2*y1*x2^2*x3^3*y3^3 - 28*x1*y1*x2^3*x3^3*y3^3 + 10*y1*x2^4*x3^3*y3^3 - 2*x1^4*y2*x3^3*y3^3 + 20*x1^3*x2*y2*x3^3*y3^3 - 48*x1^2*x2^2*y2*x3^3*y3^3 + 44*x1*x2^3*y2*x3^3*y3^3 - 14*x2^4*y2*x3^3*y3^3 - 2*x1^6*x2*y3^4 + 6*x1^5*x2^2*y3^4 - 4*x1^4*x2^3*y3^4 - 4*x1^3*x2^4*y3^4 + 6*x1^2*x2^5*y3^4 - 2*x1*x2^6*y3^4 + 2*x1^6*x3*y3^4 - 12*x1^5*x2*x3*y3^4 + 24*x1^4*x2^2*x3*y3^4 - 16*x1^3*x2^3*x3*y3^4 - 6*x1^2*x2^4*x3*y3^4 + 12*x1*x2^5*x3*y3^4 - 4*x2^6*x3*y3^4 + 6*x1^5*x3^2*y3^4 - 24*x1^4*x2*x3^2*y3^4 + 36*x1^3*x2^2*x3^2*y3^4 - 24*x1^2*x2^3*x3^2*y3^4 + 6*x1*x2^4*x3^2*y3^4 + 4*x1^4*x3^3*y3^4 - 16*x1^3*x2*x3^3*y3^4 + 24*x1^2*x2^2*x3^3*y3^4 - 16*x1*x2^3*x3^3*y3^4 + 4*x2^4*x3^3*y3^4 + y1^6*x2^4 - 6*y1^5*x2^4*y2 + 3*x1^2*y1^4*x2^2*y2^2 - 2*x1*y1^4*x2^3*y2^2 + 10*y1^4*x2^4*y2^2 - 4*x1^3*y1^3*x2*y2^3 - 4*x1^2*y1^3*x2^2*y2^3 + 12*x1*y1^3*x2^3*y2^3 - 8*y1^3*x2^4*y2^3 + 6*x1^3*y1^2*x2*y2^4 - x1^2*y1^2*x2^2*y2^4 - 16*x1*y1^2*x2^3*y2^4 + 2*y1^2*x2^4*y2^4 + 2*x1^4*y1*y2^5 - 2*x1^3*y1*x2*y2^5 - 4*x1^2*y1*x2^2*y2^5 + 14*x1*y1*x2^3*y2^5 - 3*x1^4*y2^6 + 4*x1^3*x2*y2^6 - 4*x1*x2^3*y2^6 - 4*y1^6*x2^3*x3 + 18*y1^5*x2^3*y2*x3 - 6*x1^2*y1^4*x2*y2^2*x3 + 6*x1*y1^4*x2^2*y2^2*x3 - 26*y1^4*x2^3*y2^2*x3 + 4*x1^3*y1^3*y2^3*x3 + 8*x1^2*y1^3*x2*y2^3*x3 - 16*x1*y1^3*x2^2*y2^3*x3 + 8*y1^3*x2^3*y2^3*x3 - 6*x1^3*y1^2*y2^4*x3 + 2*x1^2*y1^2*x2*y2^4*x3 + 14*x1*y1^2*x2^2*y2^4*x3 + 14*y1^2*x2^3*y2^4*x3 - 4*x1^2*y1*x2*y2^5*x3 - 4*x1*y1*x2^2*y2^5*x3 - 14*y1*x2^3*y2^5*x3 + 2*x1^3*y2^6*x3 + 4*x2^3*y2^6*x3 + 6*y1^6*x2^2*x3^2 - 18*y1^5*x2^2*y2*x3^2 + 3*x1^2*y1^4*y2^2*x3^2 - 6*x1*y1^4*x2*y2^2*x3^2 + 15*y1^4*x2^2*y2^2*x3^2 - 4*x1^2*y1^3*y2^3*x3^2 + 8*x1*y1^3*x2*y2^3*x3^2 + 8*y1^3*x2^2*y2^3*x3^2 - x1^2*y1^2*y2^4*x3^2 + 2*x1*y1^2*x2*y2^4*x3^2 - 19*y1^2*x2^2*y2^4*x3^2 + 2*x1^2*y1*y2^5*x3^2 - 4*x1*y1*x2*y2^5*x3^2 + 8*y1*x2^2*y2^5*x3^2 - 4*y1^6*x2*x3^3 + 6*y1^5*x2*y2*x3^3 + 2*x1*y1^4*y2^2*x3^3 + 8*y1^4*x2*y2^2*x3^3 - 4*x1*y1^3*y2^3*x3^3 - 16*y1^3*x2*y2^3*x3^3 + 4*x1*y1*y2^5*x3^3 + 10*y1*x2*y2^5*x3^3 - 2*x1*y2^6*x3^3 - 4*x2*y2^6*x3^3 + y1^6*x3^4 - 7*y1^4*y2^2*x3^4 + 8*y1^3*y2^3*x3^4 + 3*y1^2*y2^4*x3^4 - 8*y1*y2^5*x3^4 + 3*y2^6*x3^4 + 4*y1^5*x2^4*y3 - 6*x1^2*y1^4*x2^2*y2*y3 + 4*x1*y1^4*x2^3*y2*y3 - 10*y1^4*x2^4*y2*y3 + 12*x1^3*y1^3*x2*y2^2*y3 + 8*x1^2*y1^3*x2^2*y2^2*y3 - 28*x1*y1^3*x2^3*y2^2*y3 + 16*y1^3*x2^4*y2^2*y3 - 20*x1^3*y1^2*x2*y2^3*y3 + 36*x1*y1^2*x2^3*y2^3*y3 - 8*y1^2*x2^4*y2^3*y3 - 6*x1^4*y1*y2^4*y3 + 10*x1^3*y1*x2*y2^4*y3 + 18*x1^2*y1*x2^2*y2^4*y3 - 34*x1*y1*x2^3*y2^4*y3 + 8*x1^4*y2^5*y3 - 10*x1^3*x2*y2^5*y3 - 8*x1^2*x2^2*y2^5*y3 + 14*x1*x2^3*y2^5*y3 - 10*y1^5*x2^3*x3*y3 + 12*x1^2*y1^4*x2*y2*x3*y3 - 12*x1*y1^4*x2^2*y2*x3*y3 + 30*y1^4*x2^3*y2*x3*y3 - 12*x1^3*y1^3*y2^2*x3*y3 - 16*x1^2*y1^3*x2*y2^2*x3*y3 + 32*x1*y1^3*x2^2*y2^2*x3*y3 - 24*y1^3*x2^3*y2^2*x3*y3 + 20*x1^3*y1^2*y2^3*x3*y3 - 24*x1*y1^2*x2^2*y2^3*x3*y3 - 16*y1^2*x2^3*y2^3*x3*y3 - 4*x1^3*y1*y2^4*x3*y3 + 34*y1*x2^3*y2^4*x3*y3 - 4*x1^3*y2^5*x3*y3 + 4*x1^2*x2*y2^5*x3*y3 + 4*x1*x2^2*y2^5*x3*y3 - 14*x2^3*y2^5*x3*y3 + 6*y1^5*x2^2*x3^2*y3 - 6*x1^2*y1^4*y2*x3^2*y3 + 12*x1*y1^4*x2*y2*x3^2*y3 - 24*y1^4*x2^2*y2*x3^2*y3 + 8*x1^2*y1^3*y2^2*x3^2*y3 - 16*x1*y1^3*x2*y2^2*x3^2*y3 + 20*y1^3*x2^2*y2^2*x3^2*y3 + 12*y1^2*x2^2*y2^3*x3^2*y3 - 18*y1*x2^2*y2^4*x3^2*y3 - 2*x1^2*y2^5*x3^2*y3 + 4*x1*x2*y2^5*x3^2*y3 + 4*x2^2*y2^5*x3^2*y3 + 2*y1^5*x2*x3^3*y3 - 4*x1*y1^4*y2*x3^3*y3 - 2*y1^4*x2*y2*x3^3*y3 + 12*x1*y1^3*y2^2*x3^3*y3 - 8*y1^3*x2*y2^2*x3^3*y3 - 12*x1*y1^2*y2^3*x3^3*y3 + 16*y1^2*x2*y2^3*x3^3*y3 + 4*x1*y1*y2^4*x3^3*y3 - 10*y1*x2*y2^4*x3^3*y3 + 2*x2*y2^5*x3^3*y3 - 2*y1^5*x3^4*y3 + 6*y1^4*y2*x3^4*y3 - 4*y1^3*y2^2*x3^4*y3 - 4*y1^2*y2^3*x3^4*y3 + 6*y1*y2^4*x3^4*y3 - 2*y2^5*x3^4*y3 + 3*x1^2*y1^4*x2^2*y3^2 - 2*x1*y1^4*x2^3*y3^2 - y1^4*x2^4*y3^2 - 12*x1^3*y1^3*x2*y2*y3^2 - 4*x1^2*y1^3*x2^2*y2*y3^2 + 20*x1*y1^3*x2^3*y2*y3^2 - 4*y1^3*x2^4*y2*y3^2 + 24*x1^3*y1^2*x2*y2^2*y3^2 - 24*x1*y1^2*x2^3*y2^2*y3^2 + 4*x1^4*y1*y2^3*y3^2 - 16*x1^3*y1*x2*y2^3*y3^2 - 12*x1^2*y1*x2^2*y2^3*y3^2 + 16*x1*y1*x2^3*y2^3*y3^2 + 8*y1*x2^4*y2^3*y3^2 - 3*x1^4*y2^4*y3^2 + 19*x1^2*x2^2*y2^4*y3^2 - 14*x1*x2^3*y2^4*y3^2 - 2*x2^4*y2^4*y3^2 - 6*x1^2*y1^4*x2*x3*y3^2 + 6*x1*y1^4*x2^2*x3*y3^2 + 12*x1^3*y1^3*y2*x3*y3^2 + 8*x1^2*y1^3*x2*y2*x3*y3^2 - 16*x1*y1^3*x2^2*y2*x3*y3^2 - 4*y1^3*x2^3*y2*x3*y3^2 - 24*x1^3*y1^2*y2^2*x3*y3^2 + 24*y1^2*x2^3*y2^2*x3*y3^2 + 12*x1^3*y1*y2^3*x3*y3^2 + 24*x1*y1*x2^2*y2^3*x3*y3^2 - 36*y1*x2^3*y2^3*x3*y3^2 - 2*x1^2*x2*y2^4*x3*y3^2 - 14*x1*x2^2*y2^4*x3*y3^2 + 16*x2^3*y2^4*x3*y3^2 + 3*x1^2*y1^4*x3^2*y3^2 - 6*x1*y1^4*x2*x3^2*y3^2 + 3*y1^4*x2^2*x3^2*y3^2 - 4*x1^2*y1^3*y2*x3^2*y3^2 + 8*x1*y1^3*x2*y2*x3^2*y3^2 - 4*y1^3*x2^2*y2*x3^2*y3^2 + x1^2*y2^4*x3^2*y3^2 - 2*x1*x2*y2^4*x3^2*y3^2 + x2^2*y2^4*x3^2*y3^2 + 2*x1*y1^4*x3^3*y3^2 - 2*y1^4*x2*x3^3*y3^2 - 12*x1*y1^3*y2*x3^3*y3^2 + 12*y1^3*x2*y2*x3^3*y3^2 + 24*x1*y1^2*y2^2*x3^3*y3^2 - 24*y1^2*x2*y2^2*x3^3*y3^2 - 20*x1*y1*y2^3*x3^3*y3^2 + 20*y1*x2*y2^3*x3^3*y3^2 + 6*x1*y2^4*x3^3*y3^2 - 6*x2*y2^4*x3^3*y3^2 + 4*x1^3*y1^3*x2*y3^3 - 4*x1*y1^3*x2^3*y3^3 - 12*x1^3*y1^2*x2*y2*y3^3 + 4*x1^2*y1^2*x2^2*y2*y3^3 + 4*x1*y1^2*x2^3*y2*y3^3 + 4*y1^2*x2^4*y2*y3^3 + 4*x1^4*y1*y2^2*y3^3 + 8*x1^3*y1*x2*y2^2*y3^3 - 20*x1^2*y1*x2^2*y2^2*y3^3 + 24*x1*y1*x2^3*y2^2*y3^3 - 16*y1*x2^4*y2^2*y3^3 - 8*x1^4*y2^3*y3^3 + 16*x1^3*x2*y2^3*y3^3 - 8*x1^2*x2^2*y2^3*y3^3 - 8*x1*x2^3*y2^3*y3^3 + 8*x2^4*y2^3*y3^3 - 4*x1^3*y1^3*x3*y3^3 + 4*y1^3*x2^3*x3*y3^3 + 12*x1^3*y1^2*y2*x3*y3^3 - 8*x1^2*y1^2*x2*y2*x3*y3^3 + 16*x1*y1^2*x2^2*y2*x3*y3^3 - 20*y1^2*x2^3*y2*x3*y3^3 - 12*x1^3*y1*y2^2*x3*y3^3 + 16*x1^2*y1*x2*y2^2*x3*y3^3 - 32*x1*y1*x2^2*y2^2*x3*y3^3 + 28*y1*x2^3*y2^2*x3*y3^3 + 4*x1^3*y2^3*x3*y3^3 - 8*x1^2*x2*y2^3*x3*y3^3 + 16*x1*x2^2*y2^3*x3*y3^3 - 12*x2^3*y2^3*x3*y3^3 + 4*x1^2*y1^2*y2*x3^2*y3^3 - 8*x1*y1^2*x2*y2*x3^2*y3^3 + 4*y1^2*x2^2*y2*x3^2*y3^3 - 8*x1^2*y1*y2^2*x3^2*y3^3 + 16*x1*y1*x2*y2^2*x3^2*y3^3 - 8*y1*x2^2*y2^2*x3^2*y3^3 + 4*x1^2*y2^3*x3^2*y3^3 - 8*x1*x2*y2^3*x3^2*y3^3 + 4*x2^2*y2^3*x3^2*y3^3 + 4*x1*y1^3*x3^3*y3^3 - 4*y1^3*x2*x3^3*y3^3 - 12*x1*y1^2*y2*x3^3*y3^3 + 12*y1^2*x2*y2*x3^3*y3^3 + 12*x1*y1*y2^2*x3^3*y3^3 - 12*y1*x2*y2^2*x3^3*y3^3 - 4*x1*y2^3*x3^3*y3^3 + 4*x2*y2^3*x3^3*y3^3 + 2*x1^3*y1^2*x2*y3^4 - 3*x1^2*y1^2*x2^2*y3^4 + y1^2*x2^4*y3^4 - 6*x1^4*y1*y2*y3^4 + 2*x1^3*y1*x2*y2*y3^4 + 24*x1^2*y1*x2^2*y2*y3^4 - 30*x1*y1*x2^3*y2*y3^4 + 10*y1*x2^4*y2*y3^4 + 7*x1^4*y2^2*y3^4 - 8*x1^3*x2*y2^2*y3^4 - 15*x1^2*x2^2*y2^2*y3^4 + 26*x1*x2^3*y2^2*y3^4 - 10*x2^4*y2^2*y3^4 - 2*x1^3*y1^2*x3*y3^4 + 6*x1^2*y1^2*x2*x3*y3^4 - 6*x1*y1^2*x2^2*x3*y3^4 + 2*y1^2*x2^3*x3*y3^4 + 4*x1^3*y1*y2*x3*y3^4 - 12*x1^2*y1*x2*y2*x3*y3^4 + 12*x1*y1*x2^2*y2*x3*y3^4 - 4*y1*x2^3*y2*x3*y3^4 - 2*x1^3*y2^2*x3*y3^4 + 6*x1^2*x2*y2^2*x3*y3^4 - 6*x1*x2^2*y2^2*x3*y3^4 + 2*x2^3*y2^2*x3*y3^4 - 3*x1^2*y1^2*x3^2*y3^4 + 6*x1*y1^2*x2*x3^2*y3^4 - 3*y1^2*x2^2*x3^2*y3^4 + 6*x1^2*y1*y2*x3^2*y3^4 - 12*x1*y1*x2*y2*x3^2*y3^4 + 6*y1*x2^2*y2*x3^2*y3^4 - 3*x1^2*y2^2*x3^2*y3^4 + 6*x1*x2*y2^2*x3^2*y3^4 - 3*x2^2*y2^2*x3^2*y3^4 + 2*x1^4*y1*y3^5 - 2*x1^3*y1*x2*y3^5 - 6*x1^2*y1*x2^2*y3^5 + 10*x1*y1*x2^3*y3^5 - 4*y1*x2^4*y3^5 - 6*x1^3*x2*y2*y3^5 + 18*x1^2*x2^2*y2*y3^5 - 18*x1*x2^3*y2*y3^5 + 6*x2^4*y2*y3^5 - x1^4*y3^6 + 4*x1^3*x2*y3^6 - 6*x1^2*x2^2*y3^6 + 4*x1*x2^3*y3^6 - x2^4*y3^6 + 2*y1^5*x2*y2^3 - 6*y1^4*x2*y2^4 - 2*x1*y1^3*y2^5 + 6*y1^3*x2*y2^5 + 6*x1*y1^2*y2^6 - 2*y1^2*x2*y2^6 - 6*x1*y1*y2^7 + 2*x1*y2^8 - 2*y1^5*y2^3*x3 + 6*y1^4*y2^4*x3 - 4*y1^3*y2^5*x3 - 4*y1^2*y2^6*x3 + 6*y1*y2^7*x3 - 2*y2^8*x3 - 6*y1^5*x2*y2^2*y3 + 18*y1^4*x2*y2^3*y3 + 6*x1*y1^3*y2^4*y3 - 18*y1^3*x2*y2^4*y3 - 18*x1*y1^2*y2^5*y3 + 6*y1^2*x2*y2^5*y3 + 18*x1*y1*y2^6*y3 - 6*x1*y2^7*y3 + 6*y1^5*y2^2*x3*y3 - 18*y1^4*y2^3*x3*y3 + 12*y1^3*y2^4*x3*y3 + 12*y1^2*y2^5*x3*y3 - 18*y1*y2^6*x3*y3 + 6*y2^7*x3*y3 + 6*y1^5*x2*y2*y3^2 - 18*y1^4*x2*y2^2*y3^2 - 4*x1*y1^3*y2^3*y3^2 + 16*y1^3*x2*y2^3*y3^2 + 12*x1*y1^2*y2^4*y3^2 - 12*x1*y1*y2^5*y3^2 - 6*y1*x2*y2^5*y3^2 + 4*x1*y2^6*y3^2 + 2*x2*y2^6*y3^2 - 6*y1^5*y2*x3*y3^2 + 18*y1^4*y2^2*x3*y3^2 - 12*y1^3*y2^3*x3*y3^2 - 12*y1^2*y2^4*x3*y3^2 + 18*y1*y2^5*x3*y3^2 - 6*y2^6*x3*y3^2 - 2*y1^5*x2*y3^3 + 6*y1^4*x2*y2*y3^3 - 4*x1*y1^3*y2^2*y3^3 + 12*x1*y1^2*y2^3*y3^3 - 16*y1^2*x2*y2^3*y3^3 - 12*x1*y1*y2^4*y3^3 + 18*y1*x2*y2^4*y3^3 + 4*x1*y2^5*y3^3 - 6*x2*y2^5*y3^3 + 2*y1^5*x3*y3^3 - 6*y1^4*y2*x3*y3^3 + 4*y1^3*y2^2*x3*y3^3 + 4*y1^2*y2^3*x3*y3^3 - 6*y1*y2^4*x3*y3^3 + 2*y2^5*x3*y3^3 + 6*x1*y1^3*y2*y3^4 - 6*y1^3*x2*y2*y3^4 - 18*x1*y1^2*y2^2*y3^4 + 18*y1^2*x2*y2^2*y3^4 + 18*x1*y1*y2^3*y3^4 - 18*y1*x2*y2^3*y3^4 - 6*x1*y2^4*y3^4 + 6*x2*y2^4*y3^4 - 2*x1*y1^3*y3^5 + 2*y1^3*x2*y3^5 + 6*x1*y1^2*y2*y3^5 - 6*y1^2*x2*y2*y3^5 - 6*x1*y1*y2^2*y3^5 + 6*y1*x2*y2^2*y3^5 + 2*x1*y2^3*y3^5 - 2*x2*y2^3*y3^5 }}}Coerce into the quotient ring $Q$ defined above:
{{{id=38| Q(f) /// 0 }}}Likewise for the $y$-cordinates:
{{{id=17| Q(Z[1].numerator()*W[1].denominator() - Z[1].denominator()*W[1].numerator()) /// 0 }}} {{{id=42| /// }}} {{{id=25| /// }}}