Exercise Set 5:
 Public-key Cryptography - Diffie-Hellman and RSA

Math 414, Winter 2010, University of Washington

Due Friday, February 12, 2010

1. You and Nikita wish to agree on a secret key using the Diffie-Hellman key exchange. Nikita announces that $p=3793$ and $g=7$. Nikita secretly chooses a number $n<p$ and tells you that $g^{n} \equiv 454(\bmod p)$. You choose the random number $m=1208$. What is the secret key?
2. You see Michael and Nikita agree on a secret key using the DiffieHellman key exchange. Michael and Nikita choose $p=97$ and $g=5$. Nikita chooses a random number n and tells Michael that $g^{n} \equiv 3$ (mod 97), and Michael chooses a random number m and tells Nikita that $g^{m} \equiv 7(\bmod 97)$. Brute force crack their code: What is the secret key that Nikita and Michael agree upon? What is n ? What is m ?
3. In this problem, you will "crack" an RSA cryptosystem. What is the secret decoding number d for the RSA cryptosystem with public key $(n, e)=(5352381469067,4240501142039)$?
4. Nikita creates an RSA cryptosystem with public key

$$
(n, e)=(1433811615146881,329222149569169) .
$$

In the following two problems, show the steps you take to factor n. (Don't simply factor n directly using a computer.)
(a) Somehow you discover that $d=116439879930113$. Show how to use the probabilistic algorithm in the book to factor n.
(b) In part (a) you found that the factors p and q of n are very close. Show how to use the Fermat Factorization Method in the book to factor n.

