Exercise Set 3:

Integers Modulo n

Math 414, Winter 2010, University of Washington

Due Wednesday, January 27, 2010

1. Let n be a positive integer and let

$$
P=\{a: 1 \leq a \leq n \text { and } \operatorname{gcd}(a, n)=1\} .
$$

Is it necessarily the case that

$$
\prod_{a \in P} a \equiv-1 \quad(\bmod n) ?
$$

2. (a) Find an integer x such that

$$
x \equiv 3 \quad(\bmod 7) \quad \text { and } \quad x \equiv 5 \quad(\bmod 11) .
$$

(b) Find an integer x such that

$$
x \equiv-1 \quad(\bmod 2010) \quad \text { and } \quad x \equiv 1 \quad(\bmod 2011) .
$$

3. Find all four solutions to the equation

$$
x^{2}-1 \equiv 0 \quad(\bmod 100) .
$$

4. Suppose that $n>1$ is an integer and that $2^{n-1} \equiv-1(\bmod n)$. Is it possible that n is prime?
5. Find an integer x such that $5 x+7 \equiv 2010(\bmod 2011)$.
