Exercise Set 3:

 Integers Modulo n

 Integers Modulo n}

Math 414, Winter 2010, University of Washington

Due Wednesday, January 27, 2010

1. Let n be a positive integer and let

$$
P=\{a: 1 \leq a \leq n \text { and } \operatorname{gcd}(a, n)=1\} .
$$

Is it necessarily the case that

$$
\prod_{a \in P} a \equiv-1 \quad(\bmod n) ?
$$

Answer: Nope. E.g., for $n=8$ we have $1 \cdot 3 \cdot 5 \cdot 7 \equiv 1(\bmod 8)$.
Some relevant Sage code:

```
sage: def f(n): return prod([Mod(a,n) for a in [1..n] if gcd(a,n) == 1])
sage: for n in [2..10]: print n, f(n)
2 1
3
4
54
6
7
8 1
9 8
109
```

2. (a) Find an integer x such that

$$
x \equiv 3 \quad(\bmod 7) \quad \text { and } \quad x \equiv 5 \quad(\bmod 11) .
$$

Answer: -39. Relevant Sage code:

```
sage: x = CRT(3,5,7,11); x
-39
sage: x%7
3
sage: x%11
5
```

(b) Find an integer x such that

```
    x\equiv-1 (mod 2010) and }\quadx\equiv1 (mod 2011).
Answer: -4021
sage: x = CRT(-1,1,2010,2011); x
-4021
sage: x%2010
2009
sage: x%2011
1
```

3. Find all four solutions to the equation

$$
x^{2}-1 \equiv 0 \quad(\bmod 100)
$$

Answer: 1,49,51, 99. Relevant code:

```
sage: [x for x in Integers(100) if x^2 == 1]
[1, 49, 51, 99]
```

4. Suppose that $n>1$ is an integer and that $2^{n-1} \equiv-1(\bmod n)$. Is it possible that n is prime?
Answer: Nope, n can't be prime. If n were prime, then $2^{n-1} \equiv 1$ $(\bmod n)$ by Fermat's Little Theorem. So if the above condition also holds, we have $-1 \equiv 1(\bmod n)$, which implies that $n=2$. However, $2^{2-1} \equiv 2(\bmod 2)$ so the above condition is not satisfies by 2 .
5. Find an integer x such that $5 x+7 \equiv 2010(\bmod 2011)$. Answer: 1205. Relevant code:

Find it:
sage: $\mathrm{x}=(\operatorname{Mod}(2010,2011)-\operatorname{Mod}(7,2011)) / \operatorname{Mod}(5,2011) ; x$ 1205

Double check that it works:
sage: $\operatorname{Mod}(5 * x+7$, 2011)
2010

