Exercise Set 2:

More Prime Numbers

Math 414, Winter 2010, University of Washington

Due Friday (!!), January 22, 2010

1. If $f(x)$ and $g(x)$ are (nonzero) functions, we write $f(x) \sim g(x)$ to mean that $\lim _{x \rightarrow \infty} f(x) / g(x)=1$. Prove that for any real number a we have

$$
\frac{\log (x)}{x} \sim \frac{\log (x)}{x-a} .
$$

2. For any polynomial $f(x)$ with integer coefficients, let

$$
P(f)=\{f(n): n \in \mathbf{N} \text { and } f(n) \text { is prime }\} .
$$

For example,

$$
P\left(x^{2}+1\right)=\{2,5,17,37,101,197, \ldots\} .
$$

Come up with a guess for a condition on f that is equivalent to $P(f)$ containing infinitely many prime numbers. Give evidence for your guess. [Do not worry at all about trying to prove that your guess is correct.] Here is some potentially helpful Sage code, which illustrates computing the number of prime values $f(n)$ for $f=x^{3}+x-1$ and $1 \leq n \leq 100$:
sage: $f(x)=x \wedge 3+x-1$
sage: len([n for n in [1..100] if is_prime(f(n))])
27
3. Let $p_{1}=2, p_{2}=3, p_{3}=5, p_{4}=7, p_{5}=11, \ldots$ be the sequence of prime numbers. A prime triplet is three consecutive primes p_{n}, p_{n+1}, p_{n+2} such that $p_{n+1}=p_{n}+2$ and $p_{n+2}=p_{n+1}+2$, i.e., $p_{n}, p_{n}+2, p_{n}+4$ are all prime. For example, $3,5,7$ are prime triplets. Prove that there are no other prime triplets. [Hint: Suppose $p>3$ is a prime and you divide p by 12 and take the remainder r. Then what are the possibilities for r ?]

