
A ONE LINE FACTORING ALGORITHM

WILLIAM B. HART

Abstract. We describe a variant of Fermat’s factoring algorithm which is
competitive with SQUFOF in practice but has heuristic run time complex-

ity O(n
1
3 ) as a general factoring algorithm. We also describe a sparse class

of integers for which the algorithm is particularly effective. We provide speed
comparisons between an optimised implementation of the described algorithm,
an optimised implementation of SQUFOF and the tuned assortment of factor-
ing algorithms in the PARI computer algebra package.

Introduction

Most modern methods of factoring are variants of Fermat’s method of writing the
number n to be factored as a difference of two squares, n = (x − y)(x + y). In its
simplest form, one starts with y = b

√
nc and decrements y until n− y2 is a square.

Fermat’s method is only practical if n has a factor very close to
√

n. The run time
complexity of Fermat’s method is O(n

1
2+ε), as there are up to

√
n possible values

of y to check.

If n has factors whose ratio is relatively close to the fraction u/v then applying
Fermat’s method to nuv will find the factors faster. Lehman [?] devised a method
for searching over a space of small fractions u/v that finds a factor of n in time
O(n

1
3+ε).

More recently McKee [2] described a variant of Fermat’s algorithm which can find
a factor in expected time O(n

1
4+ε). This method searches for solutions (x, y, z) to

z2 = (x + d
√

ney)2 − ny2 with small x and y. The method achieves the stated run
time complexity by observing that if m is an integer dividing z then m2 must divide
the right hand side of the equation. By computing a square root of n (mod m2)
one can search for solutions in residue classes (mod m2). McKee gives timings
which suggest that his algorithm is competitive with the factoring algorithms in
Maple and Pari.

Most modern computer packages implement numerous algorithms for factoring. For
numbers that fit into a single machine word, Shanks’ SQUFOF (SQuare FOrms
Factoring) algorithm is popular as it has run time O(n

1
4 ) with a very small implied

constant. As with McKee’s algorithm, this is due to the fact that SQUFOF works
with numbers of about half the bit size of n and the fact that in many cases, very
few iterations are necessary to find a factor of n.

SQUFOF works by searching for square forms on the principal cycle of the binary
quadratic forms of discriminant n or 4n. A description of SQUFOF in terms of
continued fractions and in terms of binary quadratic forms is given by Gower and
Wagstaff in [?]. That paper also gives a set of heuristics for speeding up SQUFOF.
The authors claim that SQUFOF is the “clear champion factoring algorithm for
numbers between 1010 and 1018”, at least on a 32-bit machine.

For larger numbers, subexponential algorithms, such as the quadratic sieve and
number field sieve are favoured, due to their lower asymptotic complexity.

1



2 WILLIAM B. HART

In this paper we describe a variant of Fermat’s algorithm which is somewhat similar
in concept to Lehman’s algorithm and compare it to implementations of SQUFOF in
PARI and our own implementation based on Gower and Wagstaff’s heuristics. We
also compare our implementation with a highly optimised version of the quadratic
sieve which we have prepared.

In a final section of the paper, we describe a sparse class of numbers which our
algorithm is particularly efficient at factoring. In fact, numbers of many thousands
of digits in this form may be factored easily by this algorithm.

1. Description of the factoring algorithm

We begin with a description of the algorithm. As mentioned in the introduction,
the algorithm is a variant of Lehman’s algorithm in that n is given a multiplier.
However unlike Lehman’s algorithm, which applied Fermat’s algorithm to nuv for
various u/v, the only thing to be iterated in this algorithm is the multiplier itself.

OneLineFactor (n, iter)
1 for i← 1 . . . iter do
2 s← d

√
nie

3 m← s2 (mod n)
4 if issquare(m) then
5 t←

√
m

6 return GCD(n, s− t)
7 endif
8 endfor

In alternative terms, we search for a solution to t2 = (d
√

nie)2 − ni by iterating i
and looking for squares after reduction modulo n.

We have called the algorithm OneLineFactor as it can be implemented in a single
line of PARI code.

A speedup of the algorithm can be obtained by multiplying n by a certain multiplier
M =

∏
pni

i , for some small prime factors pi, and applying the algorithm to Mn.
One must ensure that n has been stripped of all its factors of pi by trial division
before running the algorithm. One avoids the factors pi being returned by the
algorithm by taking the GCD with n not Mn.

Another immediate saving is made by noting that to reduce modulo Mn at step 3,
one may simply subtract Mni from s2.

In practice the multiplier M = 480 was observed to speed up the algorithm consid-
erably as compared with a smaller multiplier or M = 1. Larger multipliers mean
that we have to look for a square after reduction modulo the larger value Mn or
that we have to reduce modulo n instead of Mn, both of which are costly, thus it
is not practical to work with a very large multiplier.

2. Heuristic analysis of the algorithm

We give a heuristic analysis of the algorithm showing that it has heuristic running
time O(n

1
3+ε).

First of all we assume that n has been trial factored up to n
1
3 . This takes n

1
3

iterations, which can clearly be done in the given run time. This ensures that n
has at most two prime factors, both of which are larger than n

1
3 and smaller than

n
2
3 .



A ONE LINE FACTORING ALGORITHM 3

To simplify the analysis in what follows we assume that the fixed multiplier M is
1. We will also suppose n is not a perfect square. This can be checked before the
algorithm begins

Let us suppose that ni = u2 + a where 0 < a < 2u + 1. As n is not a perfect
square and has no factors less than n

1
3 it is clear that a > 0. Then we have that

d
√

nie2−ni = (u+1)2−(u2 +a) = 2u+1−a. This is the value m in the algorithm.

Clearly we have 0 < m ≤ 2u < 2
√

in. We are searching for values for which m
is a square. There are approximately

√
2(ni)

1
4 squares less than 2

√
in. Thus the

probability of hitting a square at random is k(i) = 1/
√

2(ni)
1
4 .

We assume that each iteration gives an independent chance of finding a square.

If we complete n
1
3 iterations then i is bounded by n

1
3 so that each k(i) is at least

1/
√

2(n)
1
3 . It is clear that after n

1
3 iterations, in the limit, there is a reasonable

probability of hitting a square and thus factoring n.

We note that the largest factor our algorithm will find is d
√

nie+
√

m, however the
former is limited by n

2
3 and the latter by

√
2n

1
3 . In other words the largest factor

cannot be much bigger than n
2
3 if we do around n

1
3 iterations. However, as we have

found all factors of n up to n
1
3 by trial factoring, then assuming n is not prime,

this condition is satisfied.

Note that the algorithm finds a non-trivial factor of n for a similar reason. It cannot
find n as a factor, as it is too large, and it cannot return a factor of i, since the
other factor in the difference of squares must then be a multiple of n.

3. Acknowledgements

Thanks to David Harvey for spotting some typos in an initial version of this paper.

References

[1]
[2]
[3]

E-mail address: W.B.Hart@warwick.ac.uk


