SQUARE ROOTS OF PRODUCTS OF ALGEBRAIC
NUMBERS

PETER L. MONTGOMERY

ABSTRACT. Let o be an algebraic number. Let (o) =[], gi()
be a product which we suspect is a nonzero square in Q(«). We as-
sume that the prime ideal factorization of each (g;(«)) (and hence
of (y(a))) is known; in particular, each prime ideal should have
even exponent in (y(«a)). Using this ideal factorization, we con-
struct a square root of y(«), if it exists. The algorithm uses lattice
basis reduction to estimate a square root, successively replacing
the problem by a simpler one until the problem can be done di-
rectly. Like the original v(«), its constructed square root will have
a product form. The algorithm generalizes to k—th roots for arbi-
trary k > 0.
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1. PRELIMINARIES

Let f(X) = E?ZO ¢; X7 € Z[X] be an irreducible polynomial of de-
gree d, where ged(co, ¢, -+, ¢q) = 1. Let a be a root of f. Denote
the conjugates of o by a; for 1 < j < d. Given = f(a) € Q(«),
define its norm

N(B) = Noyo(B) = H Blay)

to be the product of all algebraic conjugates of 3. This norm is a ratio-
nal number. We let f(X) = 27 f(X/c,) denote the monic polynomial
with root & = cqor and conjugates &; = cqarj for 1 < j < d.

Let n be a composite integer which is not a prime power. Let Q,
denote the ring of rational numbers with denominator coprime to n
and let @ denote the elements of Q, whose numerator is also coprime
to n. The simplest form of the number field sieve (NFS) [2] attempts
to factor n by working in some Q(a) where ged(cg, n) = 1; The NFS
also requires an m € Q, such that f(m) =0 (mod n) and f'(m) € Q.
The NFS finds several integer pairs {(a;, b;)} and a finite nonempty
set S such that

(1.1) H(ai — bia) and H(ai — bym)
i€ ics
are squares (or believed to be squares) in Q(«) and in Q respectively,

and where a; — bym € Q, for all i. Let ¢ : Q,[a] — Z/nZ denote the
natural ring homomorphism induced by ¢(o) = m (mod n). Then

o (H(ai — bﬂ)) = H d(a; — biar) = H(ai —bym) (mod n).

i€s i€s i€s
We can rewrite this as
2 2

(1.2) |¢ H(ai—bia) = H(ai—bim) (mod n)

after extracting the square roots in (1.1). Equation (1.2) has the form
2?2 = 9% (mod n) where z, y € Q,; if we are lucky, then the numerator
of ged(x — y, n) will be a nontrivial factor of n.
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The NFS does not specify how to evaluate the square roots in (1.2)
(or these square roots modulo n). The square root of the rational
number [[,_¢(a; — bym) can be found quickly using the known prime
factorizations of a; — b;m. Extracting a square root of [], ¢(a; — bic)
without explicitly evaluating the product (but using the factorizations
of the N(a; — b;x)) is the subject of this paper.

2. EXISTING METHODS

If o is an algebraic integer and the ring Z[«] is a unique factorization
domain with known units, then each a; —b;a can be factored completely
into primes and units, after which the problem is straightforward. Early
implementations [7] of the NFS made these assumptions, but modern
implementations require algorithms which work in arbitrary number
fields. .

Buhler et al [2, §9] work with the monic polynomial f. If

(2.1) v(a) = H(ai — ba) = [Lics(caai — bicv)

5]
d

1€S

is a square in Q(«) = Q(&) and if all a;, b; € Z, then C§HS|/2] F(@)%y(a)

is a square in Z[&], where f’ denotes the formal derivative of f . Expand

the polynomial f'(&)2y(c) in terms of & and reduce it modulo f until

the result has degree at most d — 1 in &. Then use existing methods

(¢-adic or other) to factor X2 — 221 £1(4)2y(a) over Q(a). If the
d

latter polynomial is irreducible, then (&) is not a square.

This works well when the cardinality |S| is small. But when applied
to the NFS, the number of terms |S| often exceeds 10°, and the coef-
ficients of v(a) may have over 10° decimal digits even if f is monic.
Computing these gigantic coefficients explicitly can dominate the cost
of the NFS.

If f has odd degree d, Couveignes [3] observes that the square root
of f’(d)zv(a) is uniquely determined by specifying its norm. Since the
prime factorization of N(vy(«)) is known, the integer

N( 1512 [ a2 <>)=|cd|df5'/21 N(f(@) VN (@)

can be efficiently computed modulo any prime ¢. If we further re-
quire that q be inert (i.e., that f(X) be irreducible modulo ¢), then

HSV @)+/7v(a) mod ¢ can be computed after expanding ~(«) mod
q When this 1s done for enough ¢, the Chinese Remainder Theo-
rem uniquely determines the coefficients of CDSW] f(a)/y(a) € Z[a).
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Then these coefficients can be reduced modulo n. Bernstein and Lenstra
[1] used this while factoring the 145-digit number (248 4 1)/257.

If all ¢ are single precision, then the number of different ¢ used by
Couveignes’s algorithm grows linearly with the size of the coefficients
of /7, and the work to get each /7 mod ¢ grows linearly with the
number |S| of terms in (2.1). So the time for the algorithm grows
at least quadratically with the size |S|. This can be improved to
O(M(]S|)log |S|), where M (|S]) is the time required to multiply two
|S|-bit integers, by using a single |S|-bit modulus and fast multipli-
cation algorithms. Couveignes’s algorithm fails when the degree d is
even. The algorithm also fails if no inert prime exists (a rare problem
which occurs only for certain Galois groups). We present an algorithm
whose time is linear in |S| (ignoring the implicit growth of a; and b; as
|S| = o0) and which works for all values of d.

3. GENERATORS FOR IDEALS

We review some material about fractional ideals in number fields. For
background and justifications see standard texts, such as [4, pp. 16ff],
[5, pp. 18ff], [8, pp. 264ff].

Denote the set of algebraic integers in Q(a) = Q(&) by Q, = O;.
In particular, & € Q,.

A fractional ideal of Q, is a subset I C Q(«) such that

) There exists r € Q(«) such that I C rQy;

(1
(2) I#0 and I # {0};

(3) I is closed under addition;

(4) I is closed under multiplication by elements of Q,.

If equality holds in (1), then I is said to be a principal ideal with
generator r; this ideal is sometimes written (r). More generally, if

T, o, + -, 1 € Q(ar), where not all r; are zero, then (ry, ro, -+-, 1)
denotes the smallest subset of Q(a) containing all r; and satisfying (3)
and (4).

If I; and I, are fractional ideals, then their product 1115 is the small-
est subset of Q(a) which is closed under addition and which contains
all products i;i5 where i; € I; and 15 € I5.

A fractional ideal I of Q, is said to be an integral ideal if I C Q,
(i.e., if r = 1 works in (1)).

A prime ideal is an integral ideal I such that if I; and I, are integral
ideals with I;1 I, C I, then I; C T or I, C I.

Theorem 3.1. The fractional ideals of O, form an abelian group un-
der multiplication, with identity (1) = Q,. Any fractional ideal I can
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be uniquely expressed as a product
(3.2) I =5 pe..... e
where the B, ’s are distinct prime ideals and e; € 7.

Definition 3.3. If I is a fractional ideal of Q,, then its norm N(I) is
the largest positive rational q such that N(r)/q € Z for all r € I.

Definition 3.4. Let I be a fractional ideal of Q,, with factorization
(3.2). Define the numerator and denominator of I to be numer(I) and
denom(I) respectively where

numer(T) = fprax(en0)  gmax(e.0) (s,
max(—er,0 max(—es2,0 max(—ey,, 0

denom(I) = P ( 1)-5132 (me2,0) /. DUN (=er,0)
Equivalently, numer(/) = I N Q, and denom(I) = I"' N Q,.

Theorem 3.5. If I is a fractional ideal of Q,, then numer(I) and
denom(I) are integral ideals. Also I = numer(l)/denom(I) and N(I) =
N (numer(7))/N(denom([)).

Lemma 3.6. Let f(X) = Z?:o ¢; X7 be a polynomial with integer co-
efficients and root . If 0 < k < d and § = Z?:o Ci—k+;0, then B is
an algebraic integer.

PROOF (by Joe Buhler). An element [ of a number field K is an
algebraic integer if there is a free module M of dimension [K : Q]
such that M C M. It is readily checked that M = (1, a, -+, a® 1)
satisfies this condition, since

k
Oééﬂ = Z Cd,kJrjO/Jrj (0 < (<d— k),
§=0
k d
adkarlﬂ _ Z Cd7k+jadfk+l+] — Z Cjo/ﬂ
§=0 j=d—k
d—k—1
= - Z ;o (0<l<k). W
§=0

Corollary 3.7. Under the conditions of Lemma 3.6, if
(3.8) J = (ca, cga+cqg 1, g’ +cqg0+cg g, e,
g0V g a4 1),

and ged(co, ¢, -+, ¢q) = 1, then (1, a)J = (1).
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PROOF.

2 2
aJ = (cqa, cqa” + cq g, cqa” + cq10+ Cqyy o
d d—1
cag@® 4+ cg 10"+ qa).

By Lemma 3.6, .J and «.J contain only algebraic integers, so (1, a).J C
(1). On the other hand

cj = (cdadfj +eg T 4 Cj)
— (cdadfjfl IR Te L A SRR ch) o
eJ—aJ C(1, a)J

for all j. Since the ¢; are assumed to be relatively prime, 1 € (1, «)J.
|

Corollary 3.9. If J is defined by (3.8), then (i) numer((«)) = a.J, (ii)
denom((a)) = J, and (iii) N(J) = |cq]-

PROOF. As in the last proof, both J and a.J are integral ideals. That
proof showed that these are relatively prime. This proves (i) and (ii).

For (iii), HELP! Certainly N(1) = 1 and N(a) = (—1)%/cq4, s0
N((1, «)) divides ged(co, ¢q)/cq, implying cq/ ged(co, ¢q) divides N(.J).
|

4. LATTICE BASIS REDUCTION

Lovasz et al [6, Section 1] give a polynomial-time algorithm for con-
structing a basis of short vectors from an arbitrary basis. Specifically,
given a basis {b; }?:1 of a lattice, define its Gram-Schmidt orthogonal-
ization {b7}9_, by

b; - b;
lb*
Z b7 (=

for 1 < j < d, where |- | denotes the Euclidean dot product. The b}
have rational rather than integer coefficients. The given basis is said
to be LLL-reduced if

(4.1) b, -bj| <||bj|?/2  (1<i<j<d)
and
b; - b’ 2 3
b’ ey N b |12 1<i<d).
Jbs -+ Tt | = i a<i<a
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The authors show, in (1.7) to (1.9) of [6],
(4.2) Ibj]|* < 27 H{|by||? 1<j<i<a),

d
(43) LIl < 2% der(r),

7=1
(4.4) by || < 2D/ det (L),
in any LLL-reduced basis. Here det(L) denotes the determinant of
the sublattice. The article gives a polynomial-time algorithm to obtain
an LLL-reduced basis from a given basis; we term that process LLL
reduction.

The next lemma will be used in the proof of Proposition 5.15.
Lemma 4.5. Let {b;}4_, be an LLL-reduced basis for a lattice L. Sup-
pose U = ZJ L a;bj where a; € R. Then, for 1 <j <d,

(9/2)47 +6
—
PROOF. Let {b3}%_, be the corresponding orthogonal basis. Write

;[ 1b;1* < 277

d d
(46) u = Zajbj = Z ;b;,
7=1 7=1
. : o1 d | 2|
where af € R. Since {b}} is orthogonal, [[u[|* = }77_, |a}|?(|b}||*.
Take the dot product of (4.6) with b}. Use orthogonality and (4.1)
to derive

d d
a; [Ib5[1” =D (@b - b}) =Y ai(bi - b}) = ay[b5||* + Z ai(bi - b?),
i=1 =7 i=j+1
d
b; - b
aj=a;— ) “ ~||;’
i=j+1 J
1 d
ajl < lajl+5 3 lail
i=j+1

By induction on d — j,

Zlaz|<23/2”la| (1<j<d),

i=j
1 d
ol <lejl+2 > (3/27lail  (1<j <d).

i=j+1
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Property (4.2) says ||b;|| < 20=Y/2||bz|| for j < i < d. Therefore

d
j— * * 1 i— =7 % *
|%WMHSﬂ’Wﬂ%W%H+§§:2(”ﬂ@ﬁ)]MHmﬂ

i=j+1

d
- | i=3)/2) %] [h*
— 20 1>/2<|aj|||bj||+§ > (972 ”/2|az~||lbj||>-

i=j+1

By Cauchy-Schwarz,
d
- . . 1 iy
I < 2 (S lactbi 2) (14 55 (97204 -+ 02

) 19 (9/2)47 — 1
92 9/2-1 )

— 2j—1||u||2 (9/2)117]‘ +6
—7 .

< 2j_1||u||2<1 +
|

5. SQUARE ROOTS VIA SUCCESSIVE APPROXIMATIONS

We generalize (2.1) to allow

(5.1) v =7() =[] e,
ics
where g; € Q(a)”. In the present application g;(a) = a; — bja. We
assume that the prime factorization of each N(g;(a)) is known.
Let a have r real conjugates and 2s complex conjugates, where d =
r + 2s. Number them so that a; € R for 1 < j <r and «a;;, = @; for
r < j <r+s. Choose an integral basis

(5.2) O ={o01, 09, -+, 04}

for Q,. Also select a set of primes (), which will be used for Chinese
remaindering. The primes in ) should not divide any of the norms
N(gi(a)). We will say more about O and @ in TBD.

Define v; = ~. Initialize ¢ = 1. If / > 1, then step ¢ constructs
d¢ = dy() from =y, such that v,y is in some sense “smaller” than -,
where

Yerr = Yeby %, s¢ € {£1}.
The identity

(5.3) @) = () [ﬂ ma)%] .
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will hold for ¢ > 1. Eventually some v, will be sufficiently small that its
coefficients can be determined explicitly (using the Chinese Remainder
Theorem) and a square root constructed using another method.

At the start of step ¢, we will know the following about v, = v¢(«):

e Approximations to the embeddings |y,(ca;)| for 1 < j <d.

e The coefficients of 7,(«) (as a polynomial of degree at most d — 1
in @) modulo each ¢ € Q.

e The prime ideal factorization of the remaining fractional ideal
(Ye(c)) (H[/HZ“)Q. Here H and H, are known integral ideals
of small norm. All exponents will be even.

For ¢ = 1, these approximations are found using the defining equa-
tion (5.1) for y; = . We set H;” = H; = (1) (unit ideal).

Remark 5.4. Use logarithms, to prevent floating point exponent over-
flow. Although crude estimates of |ve(ay)| (say within 1%) will suffice,
double precision arithmetic is suggested, to reduce round-off accumula-
tion in the product (5.1).

Remark 5.5. If J is defined by (3.8), then (a — ba)J is an integral
ideal whenever a and b are integers, since J and oJ are integral ideals.
For the present problem (2.1), one can accumulate the exponents of J
and of the prime ideals dividing (a —ba)J (i.e., can treat J as an eztra
prime ideal). By Corollary 3.7, the latter ideal has norm

Zc] d=ipi| .

Remark 5.6. This initialization (z.e., approzimating v, ) takes about
half of the running time when |S| is large, if most prime ideals have
small exponents in y(«) as suggested in §8. There are many opportu-
nities for parallelism while expanding (5.1).

N(J)N(a — ba)

At the start of step ¢ where ¢ > 1, we will have a product formula
for v4(cr). obtained from (5.3). Choose s¢ = +1 to try to simplify the
numerator of vy, or s = —1 to try to simplify the denominator of .

Assuming s, = +1, the algorithm selects an ideal I, divisible by H,
and by several of the prime ideals known to divide the numerator of
(v/72)/H, . Then it selects 6, € I, such that N(d,) is small but nonzero.
This §; is an approximation to /7,. Although (d;) may be divisible by
other prime ideals as well, we can bound the norm of these additional
ideals in terms of the coefficients of f (see Theorem ?7). If we make
N(I,) sufficiently large, then the product of norms of the numerator and
denominator of (vy,/d2) will be smaller than the corresponding product
for v,. Once this product becomes sufficiently small, subsequent 7,
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will be algebraic integers (i.e., denominator norm 1). The algorithm
also attempts to reduce the unit contribution, by choosing d, so as to
minimize the absolute values d¢(c;)/|ve(cv;)|'/? of the embeddings, for
1 < j < d. When these are also small, the coefficients of v(«) can be
computed from their values modulo the primes in Q).

More precisely, select a bound Ly, (probably independent of /) rep-
resenting the largest determinant which the LLL-reduction algorithm
can accept and still perform well. Assuming s, = +1, choose an ideal
I, divisible by H;" and dividing numer (/7 ), with N(f;) < Lmax (but
as large as convenient subject to this bound).

Construct a basis for I,. Apply LLL reduction to find v € I, with
small but nonzero Euclidean norm relative to the integral basis O in
(5.2) for Q,. The lattice for I, has determinant N(I;). Equation (4.4)
gives

vl < 24 VAN (1),

The power basis {1, o, @2, - -+, a® 1} has determinant at least |cq|* ¢
relative to O, by Lemma 3.6. By the determinantal formula for the re-

sultant, if v = Y% ! v;a, then

Vg—1 Ud—2 V43 Vo 0 0

0 VUd—1 Ugq—2 U1 Vo 0

: 0 ST 0

_ 0 0 0 0 wvg_1 v4_ v
Cg IN(V) — 4+ d—1 d—2 0
€4 Cd-1 Cd42 1 Co 0

0 Cq  C4—1 Co C1 0

: - 0

0 0 Cq Ci-1 Cd2 Co

where the matrix is (2d — 1) x (2d — 1). Hadamard’s inequality gives
TBD I had a comment “WRONG” here — what did I mean?

i1 2 ¢y (d—1)/2
S ch-]
i=0 j=0

= VI < 2 D g N () (I

‘cg’lN(v)‘ <

1/2
where || f|| = (Z;i:o cf) . Hence
N(v)
N(I,)

The left side of (5.7) is an integer since v € I, by construction. More
importantly, the right side of (5.7) (call it C') is independent of N(I).

< 2d(d—1)/4 ||f||d_1-

(5.7)
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If we define

_ v _
(5-8) Ye+1 = ’YZ/VZa HZH = (1)7 He+1 = (I—Z)He )

then

(V) _ (e)/1e
(\/ f)/é-l-l) (V) - H[_Jrl/Hg_

The numerator norm of (,/7¢;1) has been reduced by a factor of
N(I;) & Lay, while its denominator has increased by at most a factor
of N(H, ,/H;) < C. If Lnax > C, then repeated application of this
construction will reduce the product of the numerator and denominator
norms of /7 until both are below C'. One additional pair of iterations
(in which I is the entire remaining numerator or entire remaining de-
nominator) will replace v by an algebraic integer of norm at most C?;
its square root can be completed by other means.

The alert reader may sense a problem. If the coefficients of v, are
small, then we can bound N (7,), but the converse is false (e.g., v, might
be a power of a unit, with norm 1 and huge coefficients).

One way to bound the coefficients of v, is to bound the embeddings
|7e(evj)| for 1 < j < d. By Lagrange’s interpolation formula, if & is a
polynomial of degree at most d — 1, then

H,#( o) —a])f(ag)
Write
F(X) ST
X oy fila) 2
Then

d—1 d—1 d
h(X) = Z h(Oéj) Z Cini = Z )(Z Z h(Oéj)Cij.
j=1 1=0 1=0 j=1

The ¢;; can be estimated in terms of the roots of f. Then the triangle
inequality bounds the coefficients of A in terms of the |h(c;)]|.

One way to bound the embeddings when all «; are real is to find a
nonzero

d—1
= E ’UZ'OéZ el
=0
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such that T'v is small, where 7" is the linear transformation such that
T
oo Vi) o v(ad)
|W(041)|1/2 |W(Otal)|l/2

The constant ¢ > 0 remains to be specified. Given an LLL-reduced
basis {vW}4_, for I, form a 2d x d matrix with the corresponding

{Tv}_ . vl =30 vad | then the absolute value of the deter-

i

minant of the image of the last d coordinates of {Tv}4_, is

(5.10) Tv = |vo, vy, -+, Vg 1,

viD(ay) vWD(ay) ... v(D(ay)
( d c v (ay) v&(ay) ... vP(ay)
i1 ve(ag)['? : :
vid(a)) vi¥d(ay) ... vD(a,)
U((]l) UEI) vél_)l 1 r ... 1
c? o o Dl o g
=pm :
[N (7e)]/? :
véd) U§d) véd)l af ' oagt agil
d
c
=+ e et () 1T (e - )
e 1<i<j<d
d
c _ :
< NG |ca|“ "N (I,) |Disc(f /ca)| 2.

If we choose ¢ so that

511 o L NGO
' N(Ip) |ea|*"|Disc(f/ca)['/?’

then the determinant of the last d coordinates is at most 4L, which
is where the LLL-reduction algorithm supposedly performs best.

TBD — Give numerical result about how close to 1.0 the new |7y,11 ()|
are.

Remark 5.12. Theoretically one could use a single LLL reduction
rather than two reductions, since T' is linear. But the last d coordi-
nates of Tv are real rather than integer, and one prefers integer arith-
metic whenever possible. It will probably suffice to begin with an LLL—
reduced basis for the {v}, and construct the corresponding {Tv")}
while rounding all coordinates to integers. I anticipate that the optimal
Tv will usually be a linear combination of the {Tv)} with small coef-
ficients, so there will be little additional round-off accumulation during
the second LLL reduction. But this awaits being tested in practice. If
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one is in doubt, he may reapply T to the first coordinates of the new
basis, to check the last coordinates thereof.

Remark 5.13. If f has complex roots, replace any complex conjugate
pairs z and Z of coordinates in the definition of T by the corresponding
real and imaginary parts of \/2z. This leaves the absolute value of the
determinant unchanged, but makes all entries real. Since

7 + 2 = 212 = [VERG)| + [VES(2)

‘2
for all complex z, Proposition 5.15 (below) remains valid.

Remark 5.14. If s, = —1, then use fy[l rather than v, in the defini-
tions of T and c.

Proposition 5.15. There exists a computable constant C = C(f)
such that the second LLL reduction outputs a vector u with N(u) <
CN(I;), where C is independent of N(I;) and c.

PROOF (long). Define
cd max(|a|, 1)t cq)t—1/4

5.16 Wi =
(5.16) j EACHIRE

for1 <j <d.
For 1 <i < d, suppose m; is an integer satisfying
MN([Z)I/d|Cd|171/d
v ’

where M remains unspecified. The number of possible selections of
{m;}L, in which all m; > 0 is

V@] V@]

_ MUN(p)lea|*™"  M*
I, vy T 24

"MN(IZ)I/d|Cd|1—1/d“ zﬁ[MN([Z)l/d|Cd|1_1/d
=1

-.
Il Y
—_ z

where the last inequality comes from (4.3).
Define w = 3¢ m;v(). Write w = 3297 w;a’. Then, by (5.17),

d

d—1 1/2
(5.18) (Zw?) = [[wll < 3 lmal (IO < dMN (I a1
1=0

=1
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Consider T'w. Its first d coordinates are those of w. If 1 < j < d,
then, by the Cauchy—Schwarz inequality and (5.18) and (5.16),

(5.19)

C

WW’(%’H |

w;
|’Ye % Z '
/2 ;. 1/2
0
|W |1/2 (Zw> (Z|aj| l>
=0

(dMN(Ig)l/d|cd|1_1/d) (d max(|a;l, 1)2d_2)

|(Tw)d+j| = 1/2

& 1/2
|w( DI
= p;d"?MN(I,)"4.

Let S = {j : u; > 1}. The set S does not depend on M. Given
€ > 0, choose M such that

(1 4 6)2(1((171)/4 H?),U/] Z Md > 2d(d71)/4 H ’72/1]] )
jes jes
By the pigeon-hole principle, there exist two distinct sequences {m/}4_,
and {m/}4_, of nonnegative integers each satisfying (5.17) and where
all corresponding

[(Tw) ]
\‘dlﬁMN([g)l/d + g

are identical in pairs, for 1 < j < d. The differences m; = m}, — m/
satisfy (5.17), and the corresponding w satisfies

(T'w)gy ;| < dYV2MN(1,)"¢ (j€S9) (by construction and
linearity of T),
(Tw)ays| < pdPMN(I)V (j¢S)  (by (5.19)).
This w therefore satisfies
(5.20)
1 Tw||* < ||w]|® + dM>N(I)**(1S| + Y p) < (d* + d*) M N (1,)*".
igs

Suppose the second LLL reduction outputs a basis with shortest
vector Tu where u = Z?:l n;v®. By Lemma 4.5,

(9/2)4 4+ 6

i[O < 27 flul P

for 1 <i <d. By (1.11) in [6] and (5.20),
(5:21)  ull® < | Tul? < 2 Y| Tw]* < 2071 (2d%) M2N (1)),
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Combining these, we find there exists 'y > 0 dependent only on d such
that

il VO] < CLMN (1)1

for all i.
By (5.19), with M replaced by C1 M,

(Tw)ays| < pyd' PCLMN (1)1,

If S # (), then, by the arithmetic-geometric mean inequality and (5.21),

S|
T 1(Tw)uss < (ﬁ 3 |(Tu>d+j|2)

JES JES
(ITul)® _ (200N (1))

- |S|IS] - |S|IS]

This is also valid when S = 0 if 0° is interpreted as 1. Therefore

N (u(a)
d d o /

= [Tt = [T 25w

= Ml T dmax(los). )7 TR by (510)

j=1

d d—1

— N (L) e 1

= d"N(Iy)]cq] Moo max(|ayl, 1)
jGS/‘L j=1

(H [(Ta)qy)| )HjeS|(Tu)d+j|

vy /LJMN([Z)I/d M|5\N([l)\5|/d

J

S ddN([l)|Cd|d71((1 + 6)Qd(clfl)/4 . 3\S|)

d PNE
d—1 d-|s| (2%°d)

([Tt ) @200)* " G
J:

< CyN(Iy),

where Cy depends only on f (and d), since there are only finitely many
choices for |S|. N
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6. IMPLEMENTATION REMARKS

Our present implementation uses version 1.39 of the PARI library
[?] developed by Henri Cohen et al. Some PARI library functions used
are:

e Compute polynomial roots ¢; to high precision;

e Computation of an integral basis;

e Construction of basis for selected ideal Iy;

e LLL reductions;

e Computation of leftover ideals H, , and H,,, in (5.8);
e Chinese remaindering;

e Factoring the final X? — v(a) over Q(&).

The integral basis computation uses the factorization of the discrimi-
nant of the polynomial. We factor the discriminant in another job, and
notify PARI about any large primes dividing either the discriminant
or ¢g. This is done using addprimestotable, which was introduced in
PARI 1.39 especially for this application.

Another new PARI 1.39 routine is idealdivexact. If [ and I’ are
nonzero ideals, then PARI 1.38 routine idealdiv computes the quotient
I"=1T1'/T as [7' % I'. This computation was very slow when applied to
the quotient (v)/I; in (5.8). Suppose I"” is known to be integral. Then
we can compute N(I") as N(I')/N(I). Let k be an integer dividing
ged(N(I'), N(I)) but not N(I"). Then I'N (k) = I N (k) and
(6.1) I'+(k) I'-(K)/(I'n(k) T

' I+ (k) I-(k)/(In(k)) I
All entries of the HNFs for I’ + (k) and I + (k) will be divisible by
k. They can be cancelled before calling idealdiv to divide I" + (k) by
I+ (k). TBD — Define HNF. When we do not know beforehand that I"”

III//((II'IE)) if N(I'+1) is large compared

is integral, we can compute " as

to N(I).

Remark 6.2. In practice y,(«) = 1 occurs frequently in practice, but
this might not occur if O has other small squares, such as if V2 €
Q(a), or if Q(a) has complex roots of unity.

Remark 6.3. When evaluating a g; (or 6g) at an o, direct application
of Horner’s rule for polynomial evaluation may cause excessive cancel-
lation, if oy is close to a root of ¢;(X). In this case g;(«) should be
rewritten in an algebraically equivalent form which is more amenable
to accurate evaluation at o = ;. As a check, after approrimating one
g at all roots aj, verify that []; gi(e;) = N(gi(«v)), where the right side
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is computed using exact arithmetic (there is little additional cost, since
the factorization of the right side is used elsewhere in the algorithm,).

7. EXAMPLE

WARNING. The algorithm was revised after this section was written.
The computations herein do not reflect those revisions.

While attempting to factor n = 6913 with d = 3, the NFS might
select m = 10 and f(X) = 7X® — X? + X + 3. Then f(m) = n. Sub-
sequently (i.e., after completing the sieving and linear algebra phases)
one may suspect that both v(m) and ~(«) are perfect squares, where
Y(X)=(X —-6)(X+1)3X —2)(3X +2)(7X — 15)

(7X +2)(13X — 5)(23X + 15)(32X —5)
and « is a root of f. Indeed they are, because

(o) —24129268236a2 + 774119358420 + 60562982034
Na) =
74

(7.2) B (20239a2 — 28982r — 27537)2

(7.1)

7
y(m) =2 -3%.55. 7" . 11% = 38808000°.

The congruence 38122 = 53312 factors n.

The real root of f is a; ~ —0.650; the complex roots are oy =
0.397 + 0.708: and a3 = as.

The discriminant of f is Disc(f) = —22-3-52-41 = —12300, whereas
Disc(f/cq) = —12300/2401.

If p is prime and p # 7 (so p { ¢4) and f(g) = 0 (mod p), denote
I,, = (p, Ta — 7q). Also denote J = (7, Ta — 1, Ta? —a+1). The
ideal factorizations of the terms in (y(«)) are listed in Table 7.1.

Term Norm Ideal factorization
a—6 |-=3%.5.11/7 1370]5,1 Lig/J
a+1 2-3/7 Iy I35/
3a—2 | —11-13/7 |Iiglizs/J
3a+2 5/7 Isi/J
Ta—15 | —2-3°-7 | L, I3, J
Ta+ 2 112 JE
13a—5 | =2-3-113/7 | Iy ;5 I}, 4/ T
23a+ 15| 2-32-13/7 | Iy, [3?,0 Liss/J
320 —5 | —11-97%/7 | LigIgr g/

TABLE 7.1. Example ideal factorizations
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Use the product representation (7.1) of v, (a) = v(«) to derive

24.312.52.118.13%2.972
N(f)/l (a)) = 76 )
(7.3) (11(a)) I§,1 [31,% [:?,2 [52,1 [ill,G [ﬁ,s 1—123,5 [927,82
. 1 )
JB
|71 (cv1)| & 306,

171 (a2)] = |71(3)| =~ 4.49 - 107,

Suppose Lpmax = 105, Observing 97 - 13 - 11 -5 = 69355 < Lpax, We
might choose s, = +1, searching for §; such that

6J% C Igrso Iz I g 151 = Torgo N L35 NI g N 15,

5 Iorga  Tiss  Ing  Isa
IR I A P
The four sublattices have triangular bases

{97, a — 82, o® — 82} for Iyr8/J7,
{13, a — 5, a* = 5%} for Ii35/J%
{11, a — 8, a* — 8%} for I;,5/J%

{5, a—1, o> = 1?} for I5,/J%

A triangular basis for the intersection is
{69355, a — 3671, o® — 21371},

An LLL-reduced (but non-triangular) basis for the intersection is {vy, vo, v3},
where

vi = 13a% — 19a — 9, vy = 21a? + 10a — 16, vy = —620% + 2a — 85.

Use this to construct the matrix

[m1(02)['/?

[71(02)['/?

M (02)['/?

(7.4)
-9 —16 —85
—-19 10 2
13 21 —62 -9 —16 —85
c Vl(al) c Vz(al) c V3(al) —-19 10 2
71 (@)]1/? RACHIRE EACHIRE 13 21 —62
402 —-618 —5109
Cﬁ%(vl(agl)l C\/§§R(V2(a21)l C\/§§R(V3(Oé21)l _4 _3 _11
|71 () [V |71 () |V |71 ()Y _q 3 6
Cx Cx Cx
Cﬂd(vl(az)) C\/ixf(Vz(%)) C\/@\Y(V3(a2))
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where

o Dme  INGOM N
97-13-11-5 |Disc(f/cq)|/? ’

as in (5.11). The determinant of the bottom three rows of (7.4) is
105171, close to Lpax (but inexact due to rounding while converting
floating to integer).

Applying LLL reduction to the columns of (7.4) yields

(7.5)
59 —50 —-34 -9 16 —85
37 —143 —28 —19 10 2 _3 5 9
—81 —102 47 _ 13 21 —62 9 _5 1
30 -9 186 402 —618 —5109 0 10
18 —-16 -11 —4 -3 —11
-3 =26 1 —1 3 —6

From the first column of (7.5), we select 6, = —81a? +37a+59. Define
72 = 71/6%. Use these definitions and (7.3) to compute

(7.6)

52.11-13-97 2, g Lis 5 Lorgo
N(01) = - ) (8) = = 72 :
N( ) . N(’Yl) . 24.312.11° ( ) . I§,1 1—3},%[??,2 [ill,G 1121,8
72 - N((SI)Z - 52 '72 ) 72 - Ig’l J2 Y
[72(0u)| & 697, [72(c2)| = [72(as)| & 4200.

We eliminated some ideals of combined norm 69355 in the numerator
of \/71 in exchange for a new ideal of norm 5 in the denominator of
V72 (we also transferred a J* = J%~!, but such will be transferred back
if we ever have s, = —1). We also brought |y(a1)|, |v(a2)|, and |y(as)|
closer numerically, thereby removing some of the unit contribution. In
actuality

y 62400 + 156660 + 11034 (7&2 + 166 + 237) ?
5 = = .

5 Y

The coefficients of the numerator of v, are 5 digits, down from 11 in
(7.2).

The denominator of J?(,/7z) is smaller than that of J?/(,/72), so
we elect to focus on the numerator of v, rather than its denominator,
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choosing s, = +1. Observing that 11%-3%-2 = 71874 < L.,., we might
decide to search for d, such that

6oJ* C I g [121,6 Is, [3?,0 I,

Unlike when ¢ = 1, the exponents on two of these ideals exceed
1, requiring us to factor f(X) modulo the prime powers 3% and 11
The prime 11 does not divide Disc(f), so the linear factors of f(X)
(mod 11) remain linear when factoring f(X) modulo powers of 11.
The prime 3 does divide Disc(f); the repeated factor (X +1)? (mod 3)
becomes a quadratic factor during Hensel lifting:

fX)=7(X =5)(X = 6)(X —8) (mod 11),
f(X)=7(X —16)(X —17)(X —19) (mod 11?),
f(X)=X(X +1)* (mod 3),
f(X)=7(X +3)(X*+2X —2) (mod 3%).

The five sublattices have triangular bases
{11, « — 8, a* — 8%} for I,;8/J%,
{112, a — 17, o = 17°} for Ij ¢/ J7,
{3, @ —2,0> —4} for I35/J?
{3, a+3,0* =9} for I,/J%
{2, a—1, a® =1} for I,/J%
A triangular basis for the intersection is
{2178, 33a + 891, o’ + 19a + 840}.
An LLL-reduced basis for the intersection is {vy, vy, v3}, where
vi=31a’+28a+3, vy=—41a®+13a+12, v =9a%—27a + 36.

After weighing these vectors at {a;}3_,, we choose 0y = v = 31a* +
28 + 3 and define v3 = 75/02. Use these definitions and (7.6) to
compute

22.3%.113 I3 0500t 6 Tug

N(62) — _T, (62) = J ) :]2 J )
N(72) 36. 72 Ig,oﬁ
N(’Y?,) - N((SQ)Q = 52 ) (73) = 1'521 )

[v3(a)| ~ 158, [73(2)| = |y3(as)| =~ 3.00.
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By chance, we removed an extra I3, from the numerator of (v2) while
constructing 3. The new 73 turns out to be

4900” — 406c + 321 (49a2 — 28 + 24>2

V3 = 5 5

The numerator and denominator of /73 have norms 189 and 5 re-
spectively, both much smaller than L, ,.. We may elect to switch to
¢—adic methods now, after using Lagrange’s formula (5.9) to bound the
coefficients of the algebraic integer

52f'(a)?y3 = 3234000 — 242550 + 201150 = (3850* — 440ar + 255)?

or
189%f'(a0)? /3 = —713600a* + 1185050 + 1100950 = (5950 — 700ax — 875)2.

If instead we decide to iterate further, then we should plan on (at
least) two more iterations, first using s3 = +1 to reduce the numera-
tor while possibly transferring an ideal to the denominator and then
using s, = —1 to reduce the updated denominator. Each iteration will
introduce an ideal J%~!, but these will cancel each other.

Start by removing [3?70 J from the numerator of |/73. This has norm
3% -7 =189 < Lyax. Triangular bases are

{3°, a—6, o® =6’} for I3,/J7
{1, a, Ta?} for J/J>
The intersection has triangular basis
{27, a — 6, Ta® — 9}.
An LLL-reduced basis is
{40 + 3, 5o — 3, 7o’ + 3a}.

After weighing these vectors at the a; (with larger weights than pre-
viously since 189 < Lyax), we choose d3 = 7a® — 7a + 6 and define
Y4 = 7v3/03. Then

2.3 I, [;i,lg
N(d3) = 03) = —/——2
N(73) 7 J?
N = = -
(74) N(d3)? 22.32.5% (%) 122,1 I??,o 152,1’
|74(c1)| = 0.868, |74(a)| = |ya(as)| = 1.75.

Next we search for ¢, such that

6407 C Ing I3015,.
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A triangular basis for the intersection is
{30, @ +9, o —9°}.

After LLL reduction and weighing, we select 6, = a? — . The new
75 = 7403 has norm 1 and has absolute value 1.00 when evaluated at
each a;;. We therefore suspect 75 to be a root of unity, and it turns out
to be +1. Therefore

N (=81l + 37a + 59) (31a® + 28 + 3)(7Ta? — Tar + 6)

V(e) = . :

8. ADJUSTMENTS FOR NUMBER FIELD SIEVE

If one wants \/7(a) mod n, then the coefficients of each dy(c) can
be computed modulo n. For the NFS (see §1), it suffices to compute
each ¢(d;(a))) mod n. There is a tiny chance that some intermediate
denominator will share a factor with n. If that factor is not n itself,
then a factor of n has been found. If the factor is n, then the power of
n can be remembered and removed later, using n—adic arithmetic.

The final homomorphism (1.2) can be computed iteratively, rather
than postponed until the end of the square root. Applying ¢ to (5.3)
gives

6 (Vr(@)) = (V@) ﬁqs(ak(a))%.

If all e; are odd integers, then (1.2) generalizes to

(8.1)

2 2

¢ H(ai — bix)ei = H(ai — bym)®i (mod n).

1€S 1€S

The square root algorithm permits negative exponents in . Heuris-
ticly, it should need fewer iterations when | N (numer(~y)) N (denom(vy))]
is small. This suggests that it may run faster when the exponents of
most prime ideals in v have small absolute values.

If one randomly selects e; = +1 in (8.1), and lets g;(«) = (a; — b;a)®
in (5.1), then statistical arguments predict considerable cancellation.
For example, a prime ideal dividing 2t of the (a; — b;a)% terms each
with exponent 1 will typically have exponent O(t/?) in the product.
Choosing approximately equal numbers of terms in the numerator and
in the denominator makes it likely that all embeddings log|vy(«;)| will
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have comparable magnitudes (to within O (|S|'/2)). A clever imple-
mentation might choose the e; so as to cause much more cancellation
than statistically expected.

9. EXPERIMENTAL RESULTS

All timings in this section are for one processor on a MIPS R4400
(SGI Challenge) running in 32-bit mode.

In November, 1994, I helped Arjen Lenstra and Bruce Dodson com-
plete the factorization of a 119-digit cofactor of the partition number
p(13171) using the polynomial

f(X) = 229712700994770930X° — 75244909504476954.X*

— 349192234242831010X° + 213343035765348142.X 2
— 133732623127145009.X — 83887843530130136

with root 144999999598687668083. The factor bases (including large
primes) went to 23!. Each dependency had about 2 million relations. It
took the square root code about 25 hours per dependency to do both
square roots. The algebraic side took 43000 iterations with L., =
10?2 to reduce a vy, whose numerator and denominator norms had
about 4.1 million decimal digits each.

For special number field sieve, where the polynomial f(X) typically
has small coefficients, the square root usually completes in an hour.
For example, when factoring a 112-digit cofactor of 102 4 1 in May,
1995, using f(X) = X*—X?+1 with root m = 1032, it took 54 minutes
to process a dependency with 506472 pairs (aq, b;).
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