Exercises

1..
  1. Compute the greatest common divisor $ \gcd(455,1235)$ by hand.

  2. Use the Sieve of Eratosthenes to make a list of all primes up to $ 100$ .

  3. Prove that there are infinitely many primes of the form $ 6x-1$ .

  4. Use Theorem 1.2.11 to deduce that $ \displaystyle \lim_{x\to\infty} \frac{\pi(x)}{x} = 0$ .

  5. Let $ \psi(x)$ be the number of primes of the form $ 4k-1$ that are $ \leq x$ . Use a computer to make a conjectural guess about $ \lim_{x\to\infty} \psi(x) / \pi(x)$ .

  6. So far $ 44$ Mersenne primes $ 2^p-1$ have been discovered. Give a guess, backed up by an argument, about when the next Mersenne prime might be discovered (you will have to do some online research).

    1. Let $ y=10000$ . Compute $ \pi(y) = \char93 \{$   primes $ p \leq y\}.$
    2. The prime number theorem implies $ \pi(x)$ is asymptotic to $ \frac{x}{\log(x)}$ . How close is $ \pi(y)$ to $ y/\log(y)$ , where $ y$ is as in (a)?

  7. Let $ a,b,c,d$ , and $ m$ be integers. Prove that
    1. if $ a\mid b$ and $ b\mid c$ then $ a\mid c$ ,
    2. if $ a\mid b$ and $ c\mid d$ then $ ac\mid bd$ ,
    3. if $ m\neq 0$ , then $ a\mid b$ if and only if $ ma\mid mb$ , and
    4. if $ d\mid a$ and $ a\neq 0$ , then $ \vert d\vert\leq \vert a\vert$ .

  8. In each of the following, apply the division algorithm to find $ q$ and $ r$ such that $ a =
bq + r$ and $ 0\leq r< \vert b\vert$ :

    $\displaystyle a=300, b=17,\quad
a=729,b=31,\quad
a=300,b=-17,\quad
a=389,b=4.
$

    1. (Do this part by hand.) Compute the greatest common divisor of $ 323$ and $ 437$ using the algorithm described in class that involves quotients and remainders (i.e., do not just factor $ a$ and $ b$ ).
    2. Compute by any means the greatest common divisor

      $\displaystyle \gcd(314159265358979323846264338, 271828182845904523536028747).
$

    1. Suppose $ a$ , $ b$ and $ n$ are positive integers. Prove that if $ a^n\mid b^n$ , then $ a\mid b$ .
    2. Suppose $ p$ is a prime and $ a$ and $ k$ are positive integers. Prove that if $ p \mid a^k$ , then $ p^k \mid a^k$ .

    1. Prove that if a positive integer $ n$ is a perfect square, then $ n$ cannot be written in the form $ 4k+3$ for $ k$ an integer. (Hint: Compute the remainder upon division by $ 4$ of each of $ (4m)^2$ , $ (4m+1)^2$ , $ (4m+2)^2$ , and $ (4m+3)^2$ .)
    2. Prove that no integer in the sequence

      $\displaystyle 11, 111, 1111, 11111, 111111, \ldots
$

      is a perfect square. (Hint: $ 111\cdots111 = 111\cdots 108 + 3 = 4k+3$ .)

  9. Prove that a positive integer $ n$ is prime if and only if $ n$ is not divisible by any prime $ p$ with $ 1 < p \leq \sqrt{n}$ .

William 2007-06-01