sage: E = EllipticCurve('681b'); E Elliptic Curve defined by y^2 + x*y = x^3 + x^2 - 1154*x - 15345 over Rational Field sage: E.rank() 0 sage: L = RDF(E.Lseries(1)); L 1.84481520613 sage: Om = RDF(E.omega()); Om 0.81991786939
There are two primes of bad reduction this time.
sage: factor(681) 3 * 227 sage: factor(discriminant(E)) 3^10 * 227^2 sage: c3 = E.tamagawa_number(3); c227 = E.tamagawa_number(227) sage: c3, c227 (2, 2) sage: Reg = RDF(E.regulator()); Reg 1.0 sage: T = E.torsion_order(); T 4
In this case it turns out that
is conjecturally
.
sage: Sha_conj = L * T^2 / (Om * Reg * c3*c227); Sha_conj 9.0