
8.3. HECKE OPERATORS 123

8.3 Hecke Operators

Just as for modular forms, there is a Hecke algebra T = Z[T1, T2, . . .] of Hecke
operators that act on Mk(Γ0(N)). Let

Rp =

{(

1 r
0 p

)

: r = 0, 1, . . . , p − 1

}

∪

{(

p 0
0 1

)}

,

where we omit
(

p 0
0 1

)

if p | N . Then the Hecke operator Tp on Mk(Γ0(N)) is
given by

Tp(x) =
∑

g∈R

gx.

Notice when p ∤ N , that Tp is defined by summing over p + 1 matrices that
correspond to the p + 1 sublattices of Z × Z of index p. This is exactly how we
defined Tp on modular forms in Definition 2.4.1.

The ring T generated by all Tp acting on Mk(Γ1(N), R) is commutative,
and Mk(Γ1(N), R) is non-canonically isomorphic as a T-module to the space
Mk(Γ1(N)) of modular forms. Note that Mk(Γ1(N), R) is a real vector space
and Mk(Γ1(N)) is a complex vector space, so this should be viewed as an
isomorphism of R-vector spaces.

8.3.1 General Definition of Hecke Operators

Let Γ be a finite index subgroup of SL2(Z) and suppose

∆ ⊂ GL2(Q)

is a set such that Γ∆ = ∆Γ = ∆ and Γ\∆ is finite. For example, ∆ = Γ trivially
satisfies this condition. Also, if Γ = Γ1(N), then for any positive integer n, the
set

∆n =

{(

a b
c d

)

∈ M2(Z) : ad − bc = n, and

(

a b
c d

)

≡

(

1 ∗
0 n

)

(mod N)

}

also satisfies this condition, as we will now prove.

Lemma 8.3.1. We have

Γ1(N) · ∆n = ∆n · Γ1(N) = ∆n

and

∆n =
⋃

a,b

Γ1(N) · σa

(

a b
0 n/a

)

,

where σa ≡
(

1/a 0
0 a

)

(mod N), the union is disjoint and 1 ≤ a ≤ n with a | n,
gcd(a, N) = 1, and 0 ≤ b < n/a. In particular, the set of cosets Γ1(N)\∆n is
finite.

124CHAPTER 8. MODULAR SYMBOLS OF ARBITRARY WEIGHT AND LEVEL

Proof. If γ ∈ Γ1(N) and δ ∈ ∆n, then

(

1 ∗
0 1

)

·

(

1 ∗
0 n

)

≡

(

1 ∗
0 n

)

·

(

1 ∗
0 1

)

≡

(

1 ∗
0 n

)

(mod N).

Thus Γ1(N)∆n ⊂ ∆n, and since Γ1(N) is a group Γ1(N)∆n = ∆n; likewise
∆nΓ1(N) = ∆n.

For the coset decomposition, we first prove the statement for N = 1, i.e., for
Γ1(N) = SL2(Z). If A is an arbitrary element of M2(Z) with determinant n, then
using row operators on the left with determinant 1, i.e., left multiplication by

elements of SL2(Z), we can transform A into the form
(

a b
0 n/a

)

, with 1 ≤ a ≤ n

and 0 ≤ b < n. (Just imagine applying the Euclidean algorithm to the two
entries in the first column of A. Then a is the gcd of the two entries in the
first column, and the lower left entry is 0. Next subtract n/a from b until
0 ≤ b < n/a.)

Next suppose N is arbitrary. Let g1, . . . , gr be such that

g1Γ1(N) ∪ · · · ∪ grΓ1(N) = SL2(Z)

is a disjoint union. If A ∈ ∆n is arbitrary, then as we showed above, there is

some γ ∈ SL2(Z), so that γ · A =
(

a b
0 n/a

)

, with 1 ≤ a ≤ n and 0 ≤ b < n/a,

and a | n. Write γ = gi · α, with α ∈ Γ1(N). Then

α · A = g−1
i ·

(

a b
0 n/a

)

≡

(

1 ∗
0 n

)

(mod N).

It follows that

g−1
i ≡

(

1 ∗
0 n

)

·

(

a b
0 n/a

)−1

≡

(

1/a ∗
0 a

)

(mod N).

Since (1 1
0 1) ∈ Γ1(N) and gcd(a, N) = 1, there is γ′ ∈ Γ1(N) such that

γ′g−1
i ≡

(

1/a 0
0 a

)

(mod N).

We may then choose σa = γ′g−1
i . Thus every A ∈ ∆n is of the form γσa

(

a b
0 n/a

)

,

with γ ∈ Γ1(N) and a, b suitably bounded. This proves the second claim.

Let any element δ =
(

a b
c d

)

∈ GL2(Q) act on the left on modular symbols
Mk by

δ(P{α, β}) = P (dX − bY,−cX + aY){δ(α), δ(β)}.

(Until now we had only defined an action of SL2(Z) on modular symbols.) For
g =

(

a b
c d

)

∈ GL2(Q), let

g̃ =

(

d −b
−c a

)

= det(g) · g−1. (8.3.1)

8.3. HECKE OPERATORS 125

Note that ˜̃g = g. Also, δP (X, Y) = (P ◦ g̃)(X, Y), where we set

g̃(X, Y) = (dX − bY,−cX + aY).

Suppose Γ and ∆ are as above. Fix a finite set R of representatives for Γ\∆.
Let

T∆ : Mk(Γ) → Mk(Γ)

be the linear map

T∆(x) =
∑

δ∈R

δx,

This map is well defined because if γ ∈ Γ and x ∈ Mk(Γ), then

∑

δ∈R

δγx =
∑

certain δ′

γδ′x =
∑

certain δ′

δ′x =
∑

δ∈R

δx,

where we have used that ∆Γ = Γ∆, and Γ acts trivially on Mk(Γ).
Let Γ = Γ1(N) and ∆ = ∆n. Then the nth Hecke operator Tn is T∆n

, and
by Lemma 8.3.1,

Tn(x) =
∑

a,b

σa

(

a b
0 n/a

)

· x,

where a, b are as in Lemma 8.3.1.
Given this definition, we can compute the Hecke operators on Mk(Γ1(N))

as follows. Write x as a modular symbol P{α, β}, compute Tn(x) as a modular
symbol, then convert back to Manin symbols using (many!) continued fractions
expansions. This is extremely inefficient, and fortunately Löıc Merel found a
much better way, which we now describe (see also [Mer94] and also [Maz73]).

8.3.2 Hecke Operators on Manin Symbols

If S is a subset of GL2(Q), let

S̃ = {g̃ : g ∈ S}.

Also, for any ring R and any subset S ⊂ M2(Z), let R[S] denote the free R-
module with basis the elements of S, so the elements of R[S] are the finite
R-linear combinations of the elements of S.

One of the main theorems of [Mer94] is that for any Γ, ∆ as above, if one
can find

∑

uMM ∈ C[M2(Z)] and a map

φ : ∆̃ SL2(Z) → SL2(Z)

that satisfies a list of conditions (see below), then for any Manin symbol [P, g] ∈
Mk(Γ), we have

T∆([P, g]) =
∑

gM∈∆̃ SL2(Z) with M∈SL2(Z)

uM [M̃ · P, φ(gM)].

126CHAPTER 8. MODULAR SYMBOLS OF ARBITRARY WEIGHT AND LEVEL

Merel devotes substantial part of his paper to giving examples of φ and
∑

uMM ∈
C[M2(Z)] that satisfy all his conditions.

When Γ = Γ1(N), the complicated list of conditions becomes simpler. Let
M2(Z)n be the set of 2 × 2 matrices with determinant n. An element

h =
∑

uM [M] ∈ C[M2(Z)n]

satisfies condition Cn if for every K ∈ M2(Z)n/ SL2(Z), we have that

∑

M∈K

uM ([M∞] − [M0]) = [∞] − [0] ∈ C[P 1(Q)]. (8.3.2)

If h satisfies condition Cn, then for any Manin symbol [P, g] ∈ Mk(Γ1(N)),
Merel proves that

Tn([P, (u, v)]) =
∑

M

uM [P (aX + bY, cX + dY), (u, v)M]. (8.3.3)

Here (u, v) ∈ (Z/NZ)2 corresponds to a coset of Γ1(N) in SL2(Z), as in Proposition 8.2.3,
and if (u′, v′) = (u, v)M ∈ (Z/NZ)2, and gcd(u′, v′, N) 6= 1, then we omit the
corresponding summand.

For example, we will now check directly that the element

h2 =

[(

2 0
0 1

)]

+

[(

1 0
0 2

)]

+

[(

2 1
0 1

)]

+

[(

1 0
1 2

)]

satisfies condition C2. We have, as in the proof of Lemma 8.3.1 (but using
elementary column operations), that

M2(Z)2/ SL2(Z) =

{(

a 0
b 2/a

)

SL2(Z) : a = 1, 2 and 0 ≤ b < 2/a

}

=

{(

1 0
0 2

)

SL2(Z),

(

1 0
1 2

)

SL2(Z),

(

2 0
0 1

)

SL2(Z)

}

.

To verify condition C2, we consider each of the three elements of M2(Z)2/ SL2(Z)
and check that (8.3.2) holds. We have that

(

1 0
0 2

)

∈

(

1 0
0 2

)

SL2(Z),

(

2 1
0 1

)

,

(

1 0
1 2

)

∈

(

1 0
1 2

)

SL2(Z),

and
(

2 0
0 1

)

∈

(

2 0
0 1

)

SL2(Z).

Thus if K = (1 0
0 2) SL2(Z), the left sum of (8.3.2) is [(1 0

0 2) (∞)] − [(1 0
0 2) (0)] =

[∞] − [0], as required. If K = (1 0
1 2) SL2(Z), then the left side of (8.3.2) is

[(2 1
0 1) (∞)]−[(2 1

0 1) (0)]+[(1 0
1 2) (∞)]−[(1 0

1 2) (0)] = [∞]−[1]+[1]−[0] = [∞]−[0].

8.3. HECKE OPERATORS 127

Finally, for K = (2 0
0 1) SL2(Z) we also have [(2 0

0 1) (∞)] − [(2 0
0 1) (0)] = [∞] − [0],

as required. Thus by (8.3.3) we can compute T2 on any Manin symbol, by
summing over the action of the four matrices (2 0

0 1) , (1 0
0 2) , (2 1

0 1) , (1 0
1 2).

Proposition 8.3.2 (Merel). The element

∑

a>b≥0
d>c≥0

ad−bc=n

[(

a b
c d

)]

∈ Z[M2(Z)n]

satisfies condition Cn.

Merel’s proof isn’t too difficult, but takes two pages.

Remark 8.3.3. In [Cre97a, §2.4], Cremona discusses the work of Merel and
Mazur on Heilbronn matrices in the special cases Γ = Γ0(N) and weight 2.
He gives a fairly simple proof that the action of Tp on Manin symbols can be
computed by summing the action of some set Rp of matrices of determinant p.
He then describes the set Rp, and gives an efficient continued fractions algorithm
for computing it (but he does not seem to prove that his description of Rp

satisfies Merel’s hypotheses). (Note: My experience is that Cremona’s set Rp

is significantly smaller than the sets appearing in Merel’s paper, but when I’ve
tried to use Rp to do certain more general higher-weight computations that are
correct using Merel’s sets, they do not work.)

8.3.3 Remarks on Complexity

Merel also gives another family Sn of matrices that satisfy condition Cn, and
he proves that as n → ∞,

#Sn ∼
12 log(2)

π2
· σ1(n) log(n),

where σ1(n) is the sum of the divisors of n. Thus for a fixed space Mk(Γ) of
modular symbols, one can compute the Hecke operator Tn using O(σ1(n) log(n))
arithmetic operations in the base field. Note that we’ve fixed Mk(Γ), so we
ignore the linear algebra involved in computation of a presentation; also, adding
elements takes a bounded number of field operations when the space is fixed.
Thus using Manin symbols the complexity of computing Tp, for p prime, is
O((p + 1) log(p)) field operations, which is exponential in the number of digits
of p.

8.3.4 Basmaji’s Trick

There is a trick of Basmaji (see [Bas96]) for computing a matrix of Tn on Mk(Γ),
when n is very large, and it is more efficient than one might naively expect.
Basmaji’s trick doesn’t improve the big-oh complexity for a fixed space, but
does improve the complexity by a constant factor of the dimension of Mk(Γ, Q).

128CHAPTER 8. MODULAR SYMBOLS OF ARBITRARY WEIGHT AND LEVEL

Suppose we are interested in computing the matrix for Tn for some massive
integer n, and that Mk(Γ, Q) as has fairly large dimension. The trick is as
follows. Choose, a list

x1 = [P1, g1], . . . , xr = [Pr, gr] ∈ V = Mk(Γ, Q)

of Manin symbols such that the map Ψ : T → V r given by

t 7→ (tx1, . . . , txr)

is injective. In practice, it is often possible to do this with r “very small”. Also,
we emphasize that V r is a Q-vector space of dimension r · dim(V).

Next find Hecke operators Ti, with i small, whose images form a basis for
the image of Ψ. Now with the above data precomputed, which only required
working with Hecke operators Ti for small i, we are ready to compute Tn with n
huge. Compute yi = Tn(xi), for each i = 1, . . . , r, which we can compute using
Heilbronn matrices since each xi = [Pi, gi] is a Manin symbol. We thus obtain
Ψ(Tn) ∈ V r. Since we have precomputed Hecke operators Tj such that Ψ(Tj)
generate V r, we can find aj such that

∑

ajΨ(Tj) = Ψ(Tn). Then since Ψ is
injective, we have Tn =

∑

ajTj, which gives the full matrix of Tn on Mk(Γ, Q).

8.4 Cuspidal Modular Symbols

Let B be the free abelian group on symbols {α}, for α ∈ P1(Q), and set

Bk = Zk−2[X, Y] ⊗ B.

Define a left action of SL2(Z) on Bk by

g.(P{α}) = (gP){g(α)},

for g ∈ SL2(Z). For any finite index subgroup Γ ⊂ SL2(Z), let Bk(Γ) be the
quotient of Bk by the relations x − g.x for all g ∈ Γ and by any torsion. Thus
Bk(Γ) is a torsion free abelian group.

The boundary map is the map

b : Mk(Γ) → Bk(Γ)

given by extending the map

b(P{α, β}) = P{β} − P{α}

linearly. The space Sk(Γ) of cuspidal modular symbols is the kernel

Sk(Γ) = ker(Mk(Γ) → Bk(Γ)),

so we have an exact sequence

0 → Sk(Γ) → Mk(Γ) → Bk(Γ).

One can prove that when k > 2 this sequence is exact on the right. Next we
give a presentation of Bk(Γ) in terms of “boundary Manin symbols”.

8.4. CUSPIDAL MODULAR SYMBOLS 129

8.4.1 Boundary Manin Symbols

We give an explicit description of the boundary map in terms of Manin symbols
for Γ = Γ1(N), then describe an efficient way to compute the boundary map.

Let R be the equivalence relation on Γ\Q2 given by

[Γ
(

λu
λv

)

] ∼ sign(λ)k[Γ (u
v)],

for any λ ∈ Q∗. Denote by Bk(Γ) the finite dimensional Q-vector space with
basis the equivalence classes (Γ\Q2)/R. The following two propositions are
proved in [Mer94].

Proposition 8.4.1. The map

µ : Bk(Γ) → Bk(Γ), P
{u

v

}

7→ P (u, v)

[

Γ

(

u
v

)]

is well defined and injective. Here u and v are assumed coprime.

Thus the kernel of δ : Sk(Γ) → Bk(Γ) is the same as the kernel of µ ◦ δ.

Proposition 8.4.2. Let P ∈ Vk−2 and g =
(

a b
c d

)

∈ SL2(Z). We have

µ ◦ δ([P, (c, d)]) = P (1, 0)[Γ (a
c)] − P (0, 1)[Γ

(

b
d

)

].

We next describe how to explicitly compute µ ◦ δ : Mk(N, ε) → Bk(N, ε) by
generalizing the algorithm of [Cre97a, §2.2]. To compute the image of [P, (c, d)],
with g =

(

a b
c d

)

∈ SL2(Z), we must compute the class of [(a
c)] and of [

(

b
d

)

].
Instead of finding a canonical form for cusps, we use a quick test for equivalence
modulo scalars. In the following algorithm, by the ith symbol we mean the ith
basis vector for a basis of Bk(N, ε). This basis is constructed as the algorithm
is called successively. We first give the algorithm, then prove the facts used by
the algorithm in testing equivalence.

Algorithm 8.4.3 (Cusp Representation). Given a boundary Manin symbol
[(u

v)] this algorithm outputs an integer i and a scalar α such that [(u
v)] is

equivalent to α times the ith symbol found so far. (This algorithm is called
repeatedly and maintains a running list of cusps seen so far.)

1. Use Proposition 8.4.4 check whether or not [(u
v)] is equivalent, modulo

scalars, to any cusp found so far. If so, return the index of the representative
and the scalar. If not, record (u

v) in the representative list.

2. Using Proposition 8.4.7, check whether or not [(u
v)] is forced to equal zero

by the relations. If it does not equal zero, return its position in the list
and the scalar 1. If it equals zero, return the scalar 0 and the position 1;
keep (u

v) in the list, and record that it is equivalent to zero.

In the case considered in Cremona’s book [Cre97a], the relations between
cusps involve only the trivial character, so they do not force any cusp classes to
vanish. Cremona gives the following two criteria for equivalence.

130CHAPTER 8. MODULAR SYMBOLS OF ARBITRARY WEIGHT AND LEVEL

Proposition 8.4.4 (Cremona). Consider (ui
vi

), i = 1, 2, with ui, vi integers
such that gcd(ui, vi) = 1 for each i.

1. There exists g ∈ Γ0(N) such that g (u1

v1
) = (u2

v2
) if and only if

s1v2 ≡ s2v1 (mod gcd(v1v2, N)), where sj satisfies ujsj ≡ 1 (mod vj).

2. There exists g ∈ Γ1(N) such that g (u1

v1
) = (u2

v2
) if and only if

v2 ≡ v1 (mod N) and u2 ≡ u1 (mod gcd(v1, N)).

Proof. The first is [Cre97a, Prop. 2.2.3], and the second is [Cre92, Lem. 3.2].

Algorithm 8.4.5 (Explicit Cusp Equivalence). Suppose (u1

v1
) and (u2

v2
) are

equivalent modulo Γ0(N). This algorithm computes a matrix g ∈ Γ0(N) such
that g (u1

v1
) = (u2

v2
).

1. Let s1, s2, r1, r2 be solutions to s1u1 − r1v1 = 1 and s2u2 − r2v2 = 1.

2. Find integers x0 and y0 such that x0v1v2 + y0N = 1.

3. Let x = −x0(s1v2 − s2v1)/(v1v2, N) and s′1 = s1 + xv1.

4. Output g = (u2 r2

v2 s2
) ·

(u1 r1

v1 s′

1

)−1
, which sends (u1

v1
) to (u2

v2
).

Proof. See the proof of [Cre97a, Prop. 8.4.4].

To see how the ε relations, for nontrivial ε, make the situation more complicated,
observe that it is possible that ε(α) 6= ε(β) but

ε(α)

[(

u
v

)]

=

[

γα

(

u
v

)]

=

[

γβ

(

u
v

)]

= ε(β)

[(

u
v

)]

;

One way out of this difficulty is to construct the cusp classes for Γ1(N), then
quotient out by the additional ε relations using Gaussian elimination. This is
far too inefficient to be useful in practice because the number of Γ1(N) cusp
classes can be unreasonably large. Instead, we give a quick test to determine
whether or not a cusp vanishes modulo the ε-relations.

Lemma 8.4.6. Suppose α and α′ are integers such that gcd(α, α′, N) = 1. Then
there exist integers β and β′, congruent to α and α′ modulo N , respectively, such
that gcd(β, β′) = 1.

Proof. By Exercise 8.2 the map SL2(Z) → SL2(Z/NZ) is surjective. By the
Euclidean algorithm, there exist integers x, y and z such that xα+yα′+zN = 1.
Consider the matrix

(y −x
α α′

)

∈ SL2(Z/NZ) and take β, β′ to be the bottom row
of a lift of this matrix to SL2(Z).

8.5. THE PAIRING BETWEEN MODULAR SYMBOLS AND MODULAR FORMS131

Proposition 8.4.7. Let N be a positive integer and ε a Dirichlet character of
modulus N . Suppose (u

v) is a cusp with u and v coprime. Then (u
v) vanishes

modulo the relations

[γ (u
v)] = ε(γ) [(u

v)] , all γ ∈ Γ0(N)

if and only if there exists α ∈ (Z/NZ)∗, with ε(α) 6= 1, such that

v ≡ αv (mod N),

u ≡ αu (mod gcd(v, N)).

Proof. First suppose such an α exists. By Lemma 8.4.6 there exists β, β′ ∈ Z

lifting α, α−1 such that gcd(β, β′) = 1. The cusp
(

βu
β′v

)

has coprime coordinates

so, by Proposition 8.4.4 and our congruence conditions on α, the cusps
(

βu
β′v

)

and (u
v) are equivalent by an element of Γ1(N). This implies that

[(

βu
β′v

)]

=

[(u
v)]. Since

[(

βu
β′v

)]

= ε(α) [(u
v)] and ε(α) 6= 1, we have [(u

v)] = 0.

Conversely, suppose [(u
v)] = 0. Because all relations are two-term relations,

and the Γ1(N)-relations identify Γ1(N)-orbits, there must exists α and β with

[

γα

(

u
v

)]

=

[

γβ

(

u
v

)]

and ε(α) 6= ε(β).

Indeed, if this did not occur, then we could mod out by the ε relations by writing
each [γα (u

v)] in terms of [(u
v)], and there would be no further relations left to

kill [(u
v)]. Next observe that

[

γβ−1α

(

u
v

)]

=

[

γβ−1γα

(

u
v

)]

= ε(β−1)

[

γα

(

u
v

)]

= ε(β−1)

[

γβ

(

u
v

)]

=

[(

u
v

)]

.

Applying Proposition 8.4.4 and noting that ε(β−1α) 6= 1 shows that β−1α
satisfies the properties of the “α” in the statement of the proposition.

We enumerate the possible α appearing in Proposition 8.4.7 as follows. Let
g = (v, N) and list the α = v · N

g ·a+1, for a = 0, . . . , g− 1, such that ε(α) 6= 0.

8.5 The Pairing Between Modular Symbols and

Modular Forms

In this section we define a pairing between modular symbols and modular forms,
and prove that the Hecke operators respect this pairing. We also define an
involution on modular symbols, and study its relationship with the pairing.
This pairing is crucial in much that follows, because it gives rise to period maps
from modular symbols to certain complex vector spaces.

132CHAPTER 8. MODULAR SYMBOLS OF ARBITRARY WEIGHT AND LEVEL

Fix an integer weight k ≥ 2 and a finite-index subgroup Γ of SL2(Z). Let
Mk(Γ) denote the space of holomorphic modular forms of weight k for Γ, and
Sk(Γ) its cuspidal subspace. Following [Mer94, §1.5], let

Sk(Γ) = {f : f ∈ Sk(Γ)}

denote the space of antiholomorphic cuspforms. Here f is the function on h∗

given by f(z) = f(z).
Define a pairing

(Sk(Γ) ⊕ Sk(Γ)) × Mk(Γ) → C (8.5.1)

by

〈(f1, f2), P{α, β}〉 =

∫ β

α

f1(z)P (z, 1)dz +

∫ β

α

f2(z)P (z, 1)dz,

and extending linearly. Here the integral is a complex path integral along a
great circle (or vertical line) from α to β (so, e.g., write z(t) = x(t) + iy(t),
where (x(t), y(t)) traces out the path, and consider two real integrals; see any
introductory book on complex analysis for more details).

The integration pairing is well defined, which means that if we replace
P{α, β} by an equivalent modular symbols (equivalent modulo the left action
of Γ), then the integral is the same. This follows from the change of variables
formulas for integration and the fact that f1 ∈ Sk(Γ) and f2 ∈ Sk(Γ). For
example, if k = 2, g ∈ Γ and f ∈ Sk(Γ), then

〈f, g{α, β}〉 = 〈f, {g(α), g(β)}〉

=

∫ g(β)

g(α)

f(z)dz

=

∫ β

α

f(g(z))dg(z)

=

∫ β

α

f(z)dz = 〈f, {α, β}〉,

where in the last step we use that f is a weight 2 modular form.

Remark 8.5.1. The integration pairing is related to special values of L-functions.
The L-function attached to a cusp form f =

∑

anqn ∈ Sk(Γ1(N)) is

L(f, s) = (2π)sΓ(s)−1

∫ ∞

0

f(it)ts
dt

t
(8.5.2)

Note that one can show that L(f, s) =
∑∞

n=1
an

ns by switching the order of
summation and integration, which is justified using standard estimates on |an|
(see, e.g., [Kna92, §VIII.5]).

For each integer j with 1 ≤ j ≤ k− 1, we have setting s = j and making the
change of variables t 7→ −it in (8.5.2), that

L(f, j) =
(−2πi)j

(j − 1)!
·
〈

f, Xj−1Y k−2−(j−1){0,∞}
〉

. (8.5.3)

8.5. THE PAIRING BETWEEN MODULAR SYMBOLS AND MODULAR FORMS133

The integers j as above are called critical integers, and when f is an eigenform,
they have deep conjectural significance. We will discuss tricks to efficiently
compute L(f, j) later in this book.

Theorem 8.5.2 (Shokoruv). The pairing 〈· , ·〉 is nondegenerate when restricted
to cuspidal modular symbols:

〈· , ·〉 : (Sk(Γ) ⊕ Sk(Γ)) × Sk(Γ) → C.

The pairing is also compatible with Hecke operators. Before proving this,
we define an action of Hecke operators on Mk(Γ1(N)) and on Sk(Γ1(N)). The
definition is very similar to the one we gave in Section 2.4 for modular forms
of level 1. For a positive integer n, let Rn be a set of coset representatives
for Γ1(N)\∆n from Lemma 8.3.1. For any γ =

(

a b
c d

)

∈ GL2(Q) and f ∈
Mk(Γ1(N)) set

f |[γ]k = det(γ)k−1(cz + d)−kf(γ(z)).

Also, for f ∈ Sk(Γ1(N)), set

f |[γ]′k = det(γ)k−1(cz + d)−kf(γ(z)).

Then for f ∈ Mk(Γ1(N)),

Tn(f) =
∑

γ∈Rn

f |[γ]k

and for f ∈ Sk(Γ1(N)),

Tn(f) =
∑

γ∈Rn

f |[γ]′k.

This agrees with the definition from 2.4 when N = 1.

Remark 8.5.3. If Γ is an arbitrary finite index subgroup of SL2(Z), then we
can define operators T∆ on Mk(Γ) for any ∆ with ∆Γ = Γ∆ = ∆ and Γ\∆
finite. For concreteness we do not do the general case here or in the theorem
below, but the proof is exactly the same (see [Mer94, §1.5]).

Finally we prove the promised Hecke compatibility of the pairing. This proof
should convince you that the definition of modular symbols is sensible, in that
they are “natural” expressions to integrate against modular forms.

Theorem 8.5.4. If f = (f1, f2) ∈ Sk(Γ1(N))⊕Sk(Γ1(N)) and x ∈ Mk(Γ1(N)),
then for any n,

〈Tn(f), x〉 = 〈f, Tn(x)〉.

Proof. We exactly follow [Mer94, §2.1], and will only prove the theorem when
f = f1 ∈ Sk(Γ1(N)), the proof in the general case being the same.

Let α, β ∈ P1(Q), P ∈ Zk−2[X, Y], and for g =
(

a b
c d

)

∈ GL2(Q), set j(g, z) =
(cz+d). Let n be any positive integer, and let Rn be a set of coset representatives
for Γ1(N)\∆n from Lemma 8.3.1.

134CHAPTER 8. MODULAR SYMBOLS OF ARBITRARY WEIGHT AND LEVEL

We have

〈Tn(f), P{α, β}〉 =

∫ β

α

Tn(f)P (z, 1)dz

=
∑

δ∈R

∫ β

α

det(δ)k−1f(δ(z))j(δ, z)−kP (z, 1)dz.

Now for each summand corresponding to the δ ∈ R, make the change of variables
u = δz. Thus we make #R change of variables. Also, recall the notation from
(8.3.1), which we will use below.

〈Tn(f), P{α, β}〉 =
∑

δ∈R

∫ δ(β)

δ(α)

det(δ)k−1f(u)j(δ, δ−1(u))−kP (δ−1(u), 1)d(δ−1(u))

=
∑

δ∈R

∫ δ(β)

δ(α)

det(δ)k−1f(u)j(δ̃, u)k det(δ)−kP (δ̃(u), 1)
det(δ)du

j(δ̃, u)2

=
∑

δ∈R

∫ δ(β)

δ(α)

f(u)j(δ̃, u)k−2P (δ̃(u), 1)du

=
∑

δ∈R

∫ δ(β)

δ(α)

f(u) · ((δ.P)(u, 1))du

= 〈f, Tn(P{α, β})〉.

The second equality is the trickiest. First, note that δ−1(u) = δ̃(u), since a
linear fractional transformation is unchanged by a nonzero rescaling of a matrix
that induces it. Thus by the quotient rule, using that δ̃ has determinant det(δ),
we see that

d(δ−1(u)) =
det(δ)du

j(δ̃, u)2
.

The other part of the second equality asserts that

j(δ, δ−1(u))−kP (δ−1(u), 1) = j(δ̃, u)k det(δ)−kP (δ̃(u), 1). (8.5.4)

From the definitions, and again using that δ−1(u) = δ̃(u), we see that

j(δ, δ−1(u)) =
det(δ)

j(δ̃, u)
,

which proves that (8.5.4) holds. In the third equality, we use that

(δ.P)(u, 1) = j(δ̃, u)k−2P (δ̃(u), 1).

To see this, note that P (X, Y) = P (X/Y, 1) · Y k−2. Using this we see that

(δ.P)(X, Y) = (P ◦ δ̃)(X, Y)

= P

(

δ̃

(

X

Y

)

, 1

)

·

(

−c ·
X

Y
+ a

)k−2

· Y k−2.

8.5. THE PAIRING BETWEEN MODULAR SYMBOLS AND MODULAR FORMS135

Now substituting (u, 1) for (X, 1), we see that

(δ.P)(u, 1) = P (δ̃(u), 1) · (−cu + a)k−2,

as required.

Remark 8.5.5. The theorem is true more generally for any Γ and any operator
T∆, via the same proof.

Suppose that Γ is finite index subgroup of SL2(Z) such that if η =
(

−1 0
0 1

)

,
then

ηΓη = Γ.

For example, Γ = Γ1(N) satisfies this condition. There is an involution ι∗ on
Mk(Γ) given by

ι∗(P (X, Y){α, β}) = −P (X,−Y){−α,−β}, (8.5.5)

which we call the star involution. On Manin symbols, ι∗ it is

ι∗[P, (u, v)] = −[P (−X, Y), (−u, v)].

Let Sk(Γ)+ be the +1 eigenspace for ι∗ and Sk(Γ)− the −1 eigenspace. There
is also a map ι on modular forms, which is adjoint to ι∗.

Remark 8.5.6 (WARNING). Notice the − sign in front of −P (X,−Y){−α,−β}
in (8.5.5). This sign is missing in [Cre97a], which is a potential source of
confusion.

We now state the final result about the pairing, which explains how modular
symbols and modular forms are related.

Theorem 8.5.7. The pairing 〈· , ·〉 restricts to give nondegenerate Hecke compatible
bilinear pairings

Sk(Γ)+ × Sk(Γ) → C and Sk(Γ)− × Sk(Γ) → C.

In light of the Peterson inner product, the above theorem implies that there
is a canonical isomorphism of T′-modules

Sk(Γ, C)+ ∼= Sk(Γ),

where T′ is the anemic Hecke algebra, i.e., the subring of T generated by Hecke
operators Tn with gcd(n, N) = 1. In fact, one can prove, e.g., using Eichler-
Shimura cohomology, that there is a non-canonical isomorphism over the full
Hecke algebra

Mk(Γ, C) ∼= Mk(Γ) ⊕ Sk(Γ).

136CHAPTER 8. MODULAR SYMBOLS OF ARBITRARY WEIGHT AND LEVEL

Remark 8.5.8. We make some remarks about computing the boundary map of
Section 8.4.1 when working in the ±1 quotient. Let s be a sign, either +1 or −1.
To compute Sk(N, ε)s it is necessary to replace Bk(N, ε) by its quotient modulo
the additional relations [(−u

v)] = s [(u
v)] for all cusps (u

v). Algorithm 8.4.3
can be modified to deal with this situation as follows. Given a cusp x = (u

v),
proceed as in Algorithm 8.4.3 and check if either (u

v) or (−u
v) is equivalent

(modulo scalars) to any cusp seen so far. If not, use the following trick to
determine whether the ε and s-relations kill the class of (u

v): use the unmodified
Algorithm 8.4.3 to compute the scalars α1, α2 and indices i1, i2 associated to
(u

v) and (−u
v), respectively. The s-relation kills the class of (u

v) if and only if
i1 = i2 but α1 6= sα2.

8.6 Explicitly Computing Mk(Γ0(N)

In this section we explicitly compute Mk(Γ0(N)) for various k and N . We
represent Manin symbols for Γ0(N) as triples (i, u, v), where (u, v) ∈ P1(Z/NZ),
and (i, u, v) corresponds to [X iY k−2−i, (u, v)] in the usual notation. Also, recall
that (u, v) corresponds to the right coset in Γ0(N)\ SL2(Z) that contains a
matrix

(

a b
c d

)

with (u, v) ≡ (c, d) as elements of P1(Z/NZ), i.e., up to rescaling
by an element of (Z/NZ)∗.

8.6.1 Computing P1(Z/NZ)

In this section we give an algorithm to compute a canonical representative for
each element of P1(Z/NZ). This algorithm is extremely important because
modular symbols implementations call it a huge number of times. A more naive
approach would be to store all pairs (u, v) ∈ (Z/NZ)2, and a fixed reduced
representative, but this wastes a huge amount of memory. For example, if
N = 105, we would store an array of

2 · 105 · 105 = 20 billion integers.

Another approach to enumerating P1(Z/NZ) is described at the end of
[Cre97a, §2.2]. We use that it is easy to test whether two pairs (u0, v0), (u1, v1)
define the same element of P1(Z/NZ); they do if and only if we have equality
of cross terms u0v1 = v0u1 (mod N) (see [Cre97a, Prop. 2.2.1]). So we consider
the 0-based list of elements

(1, 0), (1, 1), . . . , (1, N − 1), (0, 1)

concated with the list of non-equivalent elements (d, a) for d | N and a =
1, . . . , N − 1, checking each time we add a new element to our list (of (d, a))
whether we have already seen it.

Given a random pair (u, v) the problem is then to find the index into our list
of the equivalent representative in P1(Z/NZ). We use the following algorithm,
which finds a canonical representative for each element of P1(Z/NZ). Given an

8.6. EXPLICITLY COMPUTING MK(Γ0(N) 137

arbitrary (u, v), we first find the canonical equivalent elements (u′, v′). If u′ = 1,
then the index is v′. If u′ 6= 1, we find the corresponding element in an explicit
sorted list, e.g., using binary search.

In the following algorithm, a (mod N) denotes the residue of a modulo N
that satisfies 0 ≤ a < N .

Algorithm 8.6.1 (Reduction in P1(Z/NZ) to Canonical Form). Given integers

u and v and a positive integer N , this algorithm outputs a pair u0, v0 such that

(u, v) ≡ (u0, v0) as elements of P1(Z/NZ) and s ∈ Z such that (u, v) = (su0, sv0)
(mod Z/nZ). Moreover, the element (u0, v0) does not depend on the class of

(u, v), i.e., for any s with gcd(N, s) = 1 the input (su, sv) also outputs (u0, v0). If

(u, v) is not in P1(Z/NZ), this algorithm outputs (0, 0), 0.

1. [Reduce] Reduce both u and v modulo N .

2. [Easy (0, 1) case] If u = 0 check that gcd(v, N) = 1. If so, return s = 1
and (0, 1); otherwise return 0.

3. [GCD] Compute g = gcd(u, N) and s, t ∈ Z such that g = su + tN .

4. [Not in P 1?] We have gcd(u, v, N) = gcd(g, v), so if gcd(g, v) > 1, then
(u, v) 6∈ P1(Z/NZ), and we return 0.

5. [Pseudo-Inverse] Now g = su + tN , so we may think of s as “pseudo-
inverse” of u (mod N), in the sense that su is as close as possible to being
1 modulo N . Note that since g | u, changing s modulo N/g does not
change su (mod N). We can adjust s modulo N/g so it is coprime to N
(by adding multiples of N/g to s. (This is because 1 = su/g + tN/g, so s
is a unit mod N/g, and the map (Z/NZ)∗ → (Z/(N/g)Z)∗ is surjective,
e.g., as we saw in the proof of Algorithm 4.6.1.)

6. [Multiply by s] Multiply (u, v) by s, replacing (u, v) by the equivalent
element (g, sv) of P1(Z/NZ).

7. [Normalize] Compute the pair (g, v′) equivalent to (g, v) that minimizes v.

(a) [Easy case] If g = 1 this pair is (1, v).

(b) [Enumerate and find best] Otherwise, note that if 1 6= t ∈ (Z/NZ)∗

and tg ≡ g (mod N), then (t−1)g ≡ 0 (mod N), so t−1 = kN/g for
some k with 1 ≤ k ≤ g− 1. Then for t = 1 + kN/g coprime to N , we
have (gt, vt) = (g, v+kvN/g). So we compute all pairs (g, v+kvN/g)
and pick out the one that minimizes the least nonnegative residue of
vt modulo N .

(c) [Invert s and Output] The s that we have computed in the above
steps multiples the input (u, v) to give the output (u0, v0). Thus we
invert it, since the output scalar is supposed to multiply (u0, v0) to
give (u, v).

Remark 8.6.2. Allan Steel and the author jointly came up with Algorithm 8.6.1.

138CHAPTER 8. MODULAR SYMBOLS OF ARBITRARY WEIGHT AND LEVEL

Remark 8.6.3. Alternatively one could use that

P1(Z/NZ) ∼=
∏

p|N

P1(Z/pνpZ),

that that it is relatively easy to enumerate the elements of P1(Z/pnZ) for a
prime power pn.

Algorithm 8.6.4 (List P1(Z/NZ)). Given an integer N > 1, this algorithm
makes a sorted list of the distinct canonical representatives (c, d) of P1(Z/NZ)
with c 6= 0, 1, as output by Algorithm 8.6.1.

1. For each c = 1, . . . , N − 1 with g = gcd(c, N) > 1 do the following:

(a) Use Algorithm 8.6.1 to compute the canonical representative (u′, v′)
equivalent to (c, 1), and it include it in the list.

(b) If g = c, for each d = 2, . . . , N −1 with gcd(d, N) > 1 and gcd(c, d) =
1, append the normalized representative of (c, d) to the list.

2. Sort the list

3. Pass through the sorted list and delete any duplicates.

