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3.6 Computing a basis for S2(Γ0(N))

This section is about a method for using modular symbols to compute a basis
for S2(Γ0(N)). It is not the most efficient for certain applications, but it is easy
to explain and understand. See Section 3.7 for a method that takes advantage
of deeper structure of S2(Γ0(N)).

Let M2(Γ0(N); Q) and S2(Γ0(N); Q) denote modular symbols and cuspidal
modular symbols over Q. Before we begin, we describe a simple but crucial fact
about the relation between cusp forms and the Hecke algebra.

If f =
∑

bnqn ∈ C[[q]] is a power series, let an(f) = bn be the n coefficient
of f . Notice that an is a C-linear map C[[q]] → C.

As explained in [Lan95, §VII.3] (recall also 2.4.6), the Hecke operators Tn

acts on elements of M2(Γ0(N)) as follows:

Tn

(

∞
∑

m=0

amqm

)

=





∑

1≤d | gcd(n,m)

ε(d) · d · amn/d2



 qm, (3.6.1)

where ε(d) = 1 if gcd(d, N) = 1 and ε(d) = 0 if gcd(d, N) 6= 1. (Note: More
generally, if f ∈ M2(Γ1(N)) is a modular form with Dirichlet character ε, then
the above formula holds; above we are considering this formula in the special
case when ε is the trivial character.)

Lemma 3.6.1. Suppose f is a modular form and n is a positive integer. Then

a1(Tn(f)) = an(f).

Proof. The coefficient of q in (3.6.1) is ε(1) · 1 · a1·n/12 = an.

Let T′ denote the image of the Hecke algebra in End(S2(Γ0(N))), and let
T′

C
= T′ ⊗Z C be the C-span of the Hecke operators.

Proposition 3.6.2. There is a perfect bilinear pairing of complex vector spaces

S2(Γ0(N)) × T′
C → C

given by

〈f, t〉 = a1(t(f)).

Proof. The pairing is bilinear since both t and a1 are linear. Suppose f ∈
S2(Γ0(N)) is such that 〈f, t〉 = 0 for all t ∈ T′

C
. Then in particular 〈f, Tn〉 = 0

for each positive integer n. But by Lemma 3.6.1 we have

an(f) = a1(Tn(f)) = 0

for all n; thus f = 0.
Next suppose that t ∈ T′

C
is such that 〈f, t〉 = 0 for all f ∈ S2(Γ0(N)).

Then a1(t(f)) = 0 for all f . For any n, the image Tn(f) is also a cuspform, so



3.6. COMPUTING A BASIS FOR S2(Γ0(N)) 57

a1(t(Tn(f))) = 0 for all n and f . Finally T′ is commutative and Lemma 3.6.1
together imply that for all n and f ,

0 = a1(t(Tn(f))) = a1(Tn(t(f))) = an(t(f)),

so t(f) = 0 for all f . Thus t is the 0 operator.

By Proposition 3.6.2 there is an isomorphism of vector spaces

Ψ : S2(Γ0(N))
∼=

−−→ Hom(T′
C, C) (3.6.2)

that sends f ∈ S2(Γ0(N)) to the homomorphism

t 7→ a1(t(f)).

For any linear map ϕ : T′
C
→ C, let

fϕ =

∞
∑

n=1

ϕ(Tn)qn ∈ C[[q]].

By Lemma 3.6.1, we have

〈fϕ, Tn〉 = a1(Tn(fϕ)) = an(fϕ) = ϕ(Tn).

Thus fϕ is the q-expansion of the modular form Ψ−1(ϕ) that corresponds via
(3.6.2) to ϕ. Conclusion: The cuspforms fϕ for ϕ running through a basis of
Hom(T′

C
, C), form a basis for S2(Γ0(N)).

We can compute S2(Γ0(N)) by computing Hom(T′, C), where we

compute T′ in any way we want, e.g., using a space that contains an

isomorphic copy of S2(Γ0(N)).

Algorithm 3.6.3 (Basis of Cuspforms). Given positive integers N and B, this

algorithm computes a basis for S2(Γ0(N)) to precision O(qB).

1. Compute the modular symbols space M2(Γ0(N); Q) via the presentation
of Section 3.3.2.

2. Compute the subspace S2(Γ0(N); Q) of cuspidal modular symbols as in
Section 3.5.

3. Let d = 1
2 · dim S2(Γ0(N); Q). This is the dimension of S2(Γ0(N)).

4. Let [Tn] denote the matrix of Tn acting on some fixed basis of S2(Γ0(N); Q).
For a matrix A, let aij(A) denote the ij-th entry of A. For various integers
i, j with 0 ≤ i, j ≤ d − 1, compute formal q-expansions

fij(q) =

B−1
∑

n=1

aij([Tn])qn + O(qB) ∈ Q[[q]]

until we find enough to span a space of dimension d (or exhaust all of
them). These fij then form a basis for S2(Γ0(N)) to precision O(qB).
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3.6.1 Examples

In this section we use SAGE to demonstrate Algorithm 3.6.3 for computing
S2(Γ0(N)) for various N .

Example 3.6.4. The smallest N with S2(Γ0(N)) 6= 0 is N = 11.

sage: M = ModularSymbols(11); M.basis()

((1,0), (1,8), (1,9))

sage: S = M.cuspidal_submodule(); S

Dimension 2 subspace of a modular symbols space of level 11

We compute a few Hecke operators, then read off a nonzero cuspform, which
forms a basis for S2(Γ0(11)):

sage: S.T(2).matrix()

[-2 0]

[ 0 -2]

sage: S.T(3).matrix()

[-1 0]

[ 0 -1]

Thus
f0,0 = q − 2q2 − q3 + · · · ∈ S2(Γ0(11))

forms a basis for S2(Γ0(11)).

Example 3.6.5. We compute a basis for S2(Γ0(33)) to precision O(q6).

sage: M = ModularSymbols(33)

sage: S = M.cuspidal_submodule(); S

Dimension 6 subspace of a modular symbols space of level 33

Thus dimS2(Γ0(33)) = 3.

sage: R.<q> = PowerSeriesRing(QQ) # make q indeterminate of Q[[q]]

sage: f00 = sum(S.T(n).matrix()[0,0]*q^n for n in range(1,6)) + O(q^6)

sage: f00

q - q^2 - q^3 + q^4 + O(q^6)

This gives us one basis element of S2(Γ0(33)). It remains to find two others.
We find

sage: f01 = sum(S.T(n).matrix()[0,1]*q^n for n in range(1,6)) + O(q^6)

sage: f01

-2*q^3 + O(q^6)

and
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sage: f10 = sum(S.T(n).matrix()[1,0]*q^n for n in range(1,6)) + O(q^6)

sage: f10

q^3 + O(q^6)

This third one is (to our precision) a scalar multiple of the second, so we look
further.

sage: f11 = sum(S.T(n).matrix()[1,1]*q^n for n in range(1,6)) + O(q^6)

sage: f11

q - 2*q^2 + 2*q^4 + q^5 + O(q^6)

This latter form is clearly not in the span of the first two. Thus we have the
following basis for S2(Γ0(33)) (to precision O(q6)):

f00 = q − q2 − q3 + q4 + · · ·

f11 = q − 2q2 + 2q4 + q5 + · · ·

f10 = q3 + · · ·

Example 3.6.6. Next consider N = 23, where we have d = dimS2(Γ0(23)) = 2.
The command q expansion cuspforms computes matrices Tn and returns a
function f such that f(i, j) is the q-expansion of fi,j to some precision. (Note:
for efficiency reasons, f(i, j) in SAGE actually computes matrices of Tn acting
on a basis for the linear dual of S2(Γ0(N)).)

sage: M = ModularSymbols(23)

sage: S = M.cuspidal_submodule()

sage: S

Dimension 4 subspace of a modular symbols space of level 23

sage: f = S.q_expansion_cuspforms(6)

sage: f(0,0)

q - 2/3*q^2 + 1/3*q^3 - 1/3*q^4 - 4/3*q^5 + O(q^6)

sage: f(0,1)

O(q^6)

sage: f(1,0)

-1/3*q^2 + 2/3*q^3 + 1/3*q^4 - 2/3*q^5 + O(q^6)

Thus a basis for S2(Γ0(23)) is

f0,0 = q −
2

3
q2 +

1

3
q3 −

1

3
q4 −

4

3
q5 + · · ·

f1,0 = −
1

3
q2 +

2

3
q3 +

1

3
q4 −

2

3
q5 + · · ·

Or, in echelon form,

q − q3 − q4 + · · ·

q2 − 2q3 − q4 + 2q5 + · · ·
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which we computed using

sage: S.q_expansion_basis(6)

[q - q^3 - q^4 + O(q^6),

q^2 - 2*q^3 - q^4 + 2*q^5 + O(q^6)]

3.7 Computing S2(Γ0(N)) using eigenvectors

In this section we describe how to use modular symbols to construct a basis of
S2(Γ0(N)) consisting of modular forms that are eigenvectors for every element
of the ring T′ generated by the Hecke operator Tp, with p ∤ N . Such eigenvectors
are called eigenforms.

Suppose M is a positive integer that divides N . As explained in [Lan95,
VIII.1–2], for each divisor d of N/M there is a natural degeneracy map βM,d :
S2(M) → S2(Γ0(N)) given by βM,d(f(q)) = f(qd). The new subspace of
S2(Γ0(N)), denoted S2(Γ0(N))new, is the complementary T-submodule of the
T-module generated by the images of all maps βM,d, with M and d as above.
(It is a nontrivial fact that this complement is well defined; one possible proof
uses the Petersson inner product.)

The theory of Atkin and Lehner [AL70] (see Section 6.1.1) asserts that, as
a T′-module, S2(Γ0(N)) decomposes as follows:

S2(Γ0(N)) =
⊕

M|N, d|N/M

βM,d(S2(M)new).

To compute S2(Γ0(N)) it thus suffices to compute S2(M)new for each positive
divisor M of N .

We now turn to the problem of computing S2(Γ0(N))new. Atkin and Lehner
[AL70] also proved that S2(Γ0(N))new is spanned by eigenforms, each of which
occurs with multiplicity one in S2(Γ0(N))new. Moreover, if f ∈ S2(Γ0(N))new

is an eigenform then the coefficient of q in the q-expansion of f is nonzero, so it
is possible to normalize f so that coefficient of q is 1. With f so normalized, if
Tp(f) = apf , then the pth Fourier coefficient of f is ap. If f =

∑∞
n=1 anqn

is a normalized eigenvector for all Tp, then the an, with n composite, are
determined by the ap, with p prime, by the following formulas: anm = anam

when n and m are relatively prime, and apr = apr−1ap − papr−2 for p ∤ N prime.
When p | N , apr = ar

p. We conclude that in order to compute S2(Γ0(N))new,
it suffices to compute all systems of eigenvalues {a2, a3, a5, . . .} of the Hecke
operators T2, T3, T5, . . . acting on S2(Γ0(N))new. Given a system of eigenvalues,
the corresponding eigenform is f =

∑∞
n=1 anqn, where the an, for n composite,

are determined by the recurrence given above.
In light of the pairing 〈 , 〉 introduced in Section 3.1, computing the above

systems of eigenvalues {a2, a3, a5, . . .} amounts to computing the systems of
eigenvalues of the Hecke operators Tp on the subspace V of S2(Γ0(N)) that
corresponds to the new subspace of S2(Γ0(N)). For each proper divisor M of N
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and each divisor d of N/M , let φM,d : S2(Γ0(N)) → S2(Γ0(M)) be the map
sending x to ( d 0

0 1 )x. Then V is the intersection of the kernels of all maps φM,d.
The computation of the systems of eigenvalues of a collection of commuting

diagonalizable endomorphisms involves standard linear algebra techniques, such
as computation of characteristic polynomials and kernels of matrices. There
are, however, several tricks that greatly speed up this process, some of which
are described in Chapter 7.

Example 3.7.1. All forms in S2(Γ0(39)) are new. Up to Galois conjugacy,
the eigenvalues of the Hecke operators T2, T3, T5, and T7 on S2(Γ0(39)) are
{1,−1, 2,−4} and {a, 1,−2a − 2, 2a + 2}, where a2 + 2a − 1 = 0. Each of
these eigenvalues occur in S2(Γ0(39)) with multiplicity two; for example, the
characteristic polynomial of T2 on S2(Γ0(39)) is (x − 1)2 · (x2 + 2x − 1)2. Thus
S2(Γ0(39)) is spanned by

f1 = q + q2 − q3 − q4 + 2q5 − q6 − 4q7 + · · · ,

f2 = q + aq2 + q3 + (−2a − 1)q4 + (−2a − 2)q5 + aq6 + (2a + 2)q7 + · · · ,

f3 = q + σ(a)q2 + q3 + (−2σ(a) − 1)q4 + (−2σ(a) − 2)q5 + σ(a)q6 + (2σ(a) + 2)q7 + · · · ,

where σ(a) is the Gal(Q/Q)-conjugate of a.

3.7.1 Summary

To compute the q-expansion of each eigenforms in S2(Γ0(N)), we use the degeneracy
maps so that we only have to solve the problem for S2(Γ0(N))new. Using
modular symbols, we compute all systems of eigenvalues {a2, a3, a5, . . .}, then
write down the corresponding eigenforms f = q + a2q

2 + a3q
3 + · · · .


