3.2 Modular Symbols

Modular symbols provide a "combinatorial" and computable presentation of $\mathrm{H}_{1}\left(X_{0}(N), \mathbb{Z}\right)$ in terms of paths between elements of $\mathbb{P}^{1}(\mathbb{Q})$.

We denote the modular symbol defined by a pair $\alpha, \beta \in \mathbb{P}^{1}(\mathbb{Q})$ by $\{\alpha, \beta\}$. As illustrated in Figure 3.2.1, we view this modular symbol as the homology class, relative to the cusps, of a (geodesic) path from α to β in \mathfrak{h}^{*}. The homology group $\mathrm{H}_{1}\left(X_{0}(N), \mathbb{Z} ;\{\right.$ cusps $\left.\}\right)$ of $X_{0}(N)$ relative to the cusps is an enlargement of the usual homology group, in that we allow paths with endpoints in the cusps instead of restricting to closed loops.

Figure 3.2.1: The modular symbols $\{\alpha, \beta\}$ and $\{0, \infty\}$.
Modular symbols satisfy the following (homology) relations: if $\alpha, \beta, \gamma \in$ $\mathbb{Q} \cup\{\infty\}$, then

$$
\{\alpha, \beta\}+\{\beta, \gamma\}+\{\gamma, \alpha\}=0
$$

Furthermore, the space of modular symbols is torsion free, so

$$
\{\alpha, \alpha\}=0 \quad \text { and } \quad\{\alpha, \beta\}=-\{\beta, \alpha\}
$$

Let \mathbb{M}_{2} be the free abelian group with basis the set of symbols $\{\alpha, \beta\}$ modulo the 3 -term homology relations above and modulo any torsion. Define a left action of $\mathrm{GL}_{2}(\mathbb{Q})$ on \mathbb{M}_{2} by letting $g \in \mathrm{GL}_{2}(\mathbb{Q})$ act by

$$
g\{\alpha, \beta\}=\{g(\alpha), g(\beta)\}
$$

and g acts on α and β via the corresponding linear fractional transformation. The space $\mathbb{M}_{2}\left(\Gamma_{0}(N)\right)$ of modular symbols for $\Gamma_{0}(N)$ is the quotient of \mathbb{M}_{2} by the submodule generated by the infinitely many elements of the form $x-g(x)$,
for x in \mathbb{M}_{2} and g in $\Gamma_{0}(N)$, and modulo any torsion. A modular symbol for $\Gamma_{0}(N)$ is an element of this space. We frequently denote the equivalence class that defines a modular symbol by giving a representative element.

Example 3.2.1. Some modular symbols are 0 no matter what the level N is! For example, since $\gamma=\left(\begin{array}{cc}1 & 1 \\ 0 & 1\end{array}\right) \in \Gamma_{0}(N)$, we have

$$
\{\infty, 0\}=\{\gamma(\infty), \gamma(0)\}=\{\infty, 1\},
$$

so

$$
0=\{\infty, 1\}-\{\infty, 0\}=\{\infty, 1\}+\{0, \infty\}=\{0, \infty\}+\{\infty, 1\}=\{0,1\}
$$

See Exercise 3.2 for a generalization of this observation.
There is a natural homomorphism

$$
\begin{equation*}
\varphi: \mathbb{M}_{2}\left(\Gamma_{0}(N)\right) \rightarrow \mathrm{H}_{1}\left(X_{0}(N),\{\text { cusps }\}, \mathbb{Z}\right) \tag{3.2.1}
\end{equation*}
$$

that sends a formal linear combination of geodesic paths in the upper half plane to their image as paths on $X_{0}(N)$. In [Man72] Manin proved that (3.2.1) is an isomorphism (this is a fairly involved topological argument).

Manin also identified the subspace of $\mathbb{M}_{2}\left(\Gamma_{0}(N)\right)$ that is sent isomorphically onto $\mathrm{H}_{1}\left(X_{0}(N), \mathbb{Z}\right)$. Let $\mathbb{B}_{2}\left(\Gamma_{0}(N)\right)$ denote the free abelian group whose basis is the finite set $C\left(\Gamma_{0}(N)\right)=\Gamma_{0}(N) \backslash \mathbb{P}^{1}(\mathbb{Q})$ of cusps for $\Gamma_{0}(N)$. The boundary map

$$
\delta: \mathbb{M}_{2}\left(\Gamma_{0}(N)\right) \rightarrow \mathbb{B}_{2}\left(\Gamma_{0}(N)\right)
$$

sends $\{\alpha, \beta\}$ to $\{\beta\}-\{\alpha\}$, where $\{\beta\}$ denotes the basis element of $\mathbb{B}_{2}\left(\Gamma_{0}(N)\right)$ corresponding to $\beta \in \mathbb{P}^{1}(\mathbb{Q})$. The kernel $\mathbb{S}_{2}\left(\Gamma_{0}(N)\right)$ of δ is the subspace of cuspidal modular symbols. Thus an element of $\mathbb{S}_{2}\left(\Gamma_{0}(N)\right)$ can be thought of as a linear combination of paths in \mathfrak{h}^{*} whose endpoints are cusps, and whose images in $X_{0}(N)$ are homologous to a \mathbb{Z}-linear combination of closed paths.

Theorem 3.2.2 (Manin). The map φ given above induces a canonical isomorphism

$$
\mathbb{S}_{2}\left(\Gamma_{0}(N)\right) \cong \mathrm{H}_{1}\left(X_{0}(N), \mathbb{Z}\right) .
$$

For any (commutative) ring R let

$$
\mathbb{M}_{2}\left(\Gamma_{0}(N), R\right)=\mathbb{M}_{2}\left(\Gamma_{0}(N)\right) \otimes_{\mathbb{Z}} R,
$$

and

$$
\mathbb{S}_{2}\left(\Gamma_{0}(N), R\right)=\mathbb{S}_{2}\left(\Gamma_{0}(N)\right) \otimes_{\mathbb{Z}} R .
$$

Example 3.2.3. We illustrate modular symbols in the case when $N=11$. Using SAGE, which implements the Manin symbols algorithm that we describe below over \mathbb{Q}, we find that $\mathbb{M}_{2}\left(\Gamma_{0}(11), \mathbb{Q}\right)$ has basis $\{\infty, 0\},\{-1 / 8,0\},\{-1 / 9,0\}$:

```
sage: set_modsym_print_mode ('modular')
sage: M = ModularSymbols(11, 2)
sage: M.basis()
({Infinity,0}, {-1/8,0}, {-1/9,0})
```

The integral homology $\mathrm{H}_{1}\left(X_{0}(11), \mathbb{Z}\right)$ corresponds to the abelian subgroup generated by $\{-1 / 8,0\}$ and $\{-1 / 9,0\}$.

```
sage: S = M.cuspidal_submodule()
sage: S.integral_basis() # basis over ZZ.
({-1/8,0}, {-1/9,0})
```


3.3 Computing with Modular Symbols

3.3.1 Manin's Trick

In this section, we describe a trick of Manin that proves that the space of modular symbols can be computed.

The group $\Gamma_{0}(N)$ has finite index in $\mathrm{SL}_{2}(\mathbb{Z})$ (see Exercise 1.6). Let $r_{0}, r_{1}, \ldots, r_{m}$ be distinct right coset representatives for $\Gamma_{0}(N)$ in $\mathrm{SL}_{2}(\mathbb{Z})$, so that

$$
\mathrm{SL}_{2}(\mathbb{Z})=\Gamma_{0}(N) r_{0} \cup \Gamma_{0}(N) r_{1} \cup \cdots \cup \Gamma_{0}(N) r_{m}
$$

where the union is disjoint. For example, when N is prime, a list of coset representatives is

$$
\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right),\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right),\left(\begin{array}{ll}
1 & 0 \\
2 & 1
\end{array}\right),\left(\begin{array}{ll}
1 & 0 \\
3 & 1
\end{array}\right), \ldots,\left(\begin{array}{rr}
1 & 0 \\
N-1 & 1
\end{array}\right),\left(\begin{array}{rr}
0 & -1 \\
1 & 0
\end{array}\right)
$$

Let

$$
\mathbb{P}^{1}(\mathbb{Z} / N \mathbb{Z})=\{(a: b): a, b \in \mathbb{Z} / N \mathbb{Z}, \operatorname{gcd}(a, b, N)=1\} / \sim
$$

where $(a: b) \sim\left(a^{\prime}: b^{\prime}\right)$ if there is $u \in(\mathbb{Z} / N \mathbb{Z})^{*}$ such that $a=u a^{\prime}, b=u b^{\prime}$.
Proposition 3.3.1. There is a bijection between $\mathbb{P}^{1}(\mathbb{Z} / N \mathbb{Z})$ and the right cosets of $\Gamma_{0}(N)$ in $\mathrm{SL}_{2}(\mathbb{Z})$, which sends a coset representative $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ to the class of $(c: d)$ in $\mathbb{P}^{1}(\mathbb{Z} / N \mathbb{Z})$.

Proof. See Exercise 3.3.
We now describe an observation of Manin (see [Man72, §1.5]) that is crucial to making $\mathbb{M}_{2}\left(\Gamma_{0}(N)\right)$ computable. It allows us to write any modular symbol $\{\alpha, \beta\}$ as a \mathbb{Z}-linear combination of symbols of the form $r_{i}\{0, \infty\}$, where the $r_{i} \in \mathrm{SL}_{2}(\mathbb{Z})$ are coset representatives as above. In particular, the finitely many symbols $r_{0}\{0, \infty\}, \ldots r_{m}\{0, \infty\}$ generate $\mathbb{M}_{2}\left(\Gamma_{0}(N)\right)$.

Proposition 3.3.2 (Manin). Let N be a positive integer and r_{0}, \ldots, r_{m} a set of right coset representatives for $\Gamma_{0}(N)$ in $\mathrm{SL}_{2}(\mathbb{Z})$. Every $\{\alpha, \beta\} \in \mathbb{M}_{2}\left(\Gamma_{0}(N)\right)$ is a \mathbb{Z}-linear combination of $r_{0}\{0, \infty\}, \ldots r_{m}\{0, \infty\}$.

We give two proofs of the proposition. The first is useful for actual computation (see [Cre97a, §2.1.6]); the second seems less useful for computation but is easy to understand conceptually (see [MTT86, §2]).
Continued Fractions Proof of Proposition 3.3.2. Because of the relation $\{\alpha, \beta\}=$ $\{0, \beta\}-\{0, \alpha\}$, it suffices to consider modular symbols of the form $\{0, b / a\}$, where the rational number b / a is in lowest terms. Expand b / a as a continued fraction and consider the successive convergents in lowest terms:

$$
\frac{b_{-2}}{a_{-2}}=\frac{0}{1}, \quad \frac{b_{-1}}{a_{-1}}=\frac{1}{0}, \quad \frac{b_{0}}{a_{0}}=\frac{b_{0}}{1}, \ldots, \quad \frac{b_{n-1}}{a_{n-1}}, \quad \frac{b_{n}}{a_{n}}=\frac{b}{a}
$$

where the first two are included formally. Then

$$
b_{k} a_{k-1}-b_{k-1} a_{k}=(-1)^{k-1},
$$

so that

$$
g_{k}=\left(\begin{array}{ll}
b_{k} & (-1)^{k-1} b_{k-1} \\
a_{k} & (-1)^{k-1} a_{k-1}
\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{Z}) .
$$

Hence

$$
\left\{\frac{b_{k-1}}{a_{k-1}}, \frac{b_{k}}{a_{k}}\right\}=g_{k}\{0, \infty\}=r_{i}\{0, \infty\}
$$

for some i, is of the required special form. Since

$$
\{0, b / a\}=\{0, \infty\}+\left\{\infty, b_{0}\right\}+\left\{\frac{b_{0}}{1}, \frac{b_{1}}{a_{1}}\right\}+\cdots+\left\{\frac{b_{n-1}}{a_{n-1}}, \frac{b_{n}}{a_{n}}\right\}
$$

this completes the proof.
Inductive Proof of Proposition 3.3.2. As in the first proof it suffices to prove the proposition for any symbol $\{0, b / a\}$, where b / a is in lowest terms. We will induct on $a \in \mathbb{Z}_{\geq 0}$. If $a=0$ then the symbol is $\{0, \infty\}$, which corresponds to the identity coset, so assume that $a>0$. Find $a^{\prime} \in \mathbb{Z}$ such that

$$
b a^{\prime} \equiv 1 \quad(\bmod a) ;
$$

then $b^{\prime}=\left(b a^{\prime}-1\right) / a \in \mathbb{Z}$ so the matrix

$$
\delta=\left(\begin{array}{ll}
b & b^{\prime} \\
a & a^{\prime}
\end{array}\right)
$$

is an element of $\mathrm{SL}_{2}(\mathbb{Z})$. Thus $\delta=\gamma \cdot r_{j}$ for some right coset representative r_{j} and $\gamma \in \Gamma_{0}(N)$. Then

$$
\{0, b / a\}-\left\{0, b^{\prime} / a^{\prime}\right\}=\left\{b^{\prime} / a^{\prime}, b / a\right\}=\left(\begin{array}{cc}
b & b^{\prime} \\
a & a^{\prime}
\end{array}\right) \cdot\{0, \infty\}=r_{j}\{0, \infty\}
$$

as elements of $\mathcal{M}_{2}\left(\Gamma_{0}(N)\right)$. By induction $\left\{0, b^{\prime} / a^{\prime}\right\}$ is a linear combination of symbols of the form $r_{k}\{0, \infty\}$, which completes the proof.

Example 3.3.3. Let $N=11$, and consider the modular symbol $\{0,4 / 7\}$. We have

$$
\frac{4}{7}=0+\frac{1}{1+\frac{1}{1+\frac{1}{3}}}
$$

so the partial convergents are

$$
\frac{b_{-2}}{a_{-2}}=\frac{0}{1}, \quad \frac{b_{-1}}{a_{-1}}=\frac{1}{0}, \quad \frac{b_{0}}{a_{0}}=\frac{0}{1}, \quad \frac{b_{1}}{a_{1}}=\frac{1}{1}, \quad \frac{b_{2}}{a_{2}}=\frac{1}{2}, \quad \frac{b_{3}}{a_{3}}=\frac{4}{7} .
$$

Thus, noting as in Example 3.2.1 that $\{0,1\}=0$, we have

$$
\begin{aligned}
\{0,4 / 7\} & =\{0, \infty\}+\{\infty, 0\}+\{0,1\}+\{1,1 / 2\}+\{1 / 2,4 / 7\} \\
& =\left(\begin{array}{ll}
1 & -1 \\
2 & -1
\end{array}\right)\{0, \infty\}+\left(\begin{array}{ll}
4 & 1 \\
7 & 2
\end{array}\right)\{0, \infty\} \\
& =\left(\begin{array}{ll}
1 & 0 \\
9 & 1
\end{array}\right)\{0, \infty\}+\left(\begin{array}{ll}
1 & 0 \\
9 & 1
\end{array}\right)\{0, \infty\} \\
& =2 \cdot\left[\left(\begin{array}{ll}
1 & 0 \\
9 & 1
\end{array}\right)\{0, \infty\}\right]
\end{aligned}
$$

3.3.2 Manin symbols

As above, fix coset representatives r_{0}, \ldots, r_{m} for $\Gamma_{0}(N)$ in $\mathrm{SL}_{2}(\mathbb{Z})$. Consider formal symbols $\left[r_{i}\right]^{\prime}$ for $i=0, \ldots, m$. Let $\left[r_{i}\right]$ be the modular symbol $r_{i}\{0, \infty\}=$ $\left\{r_{i}(0), r_{i}(\infty)\right\}$. We equip the symbols $\left[r_{0}\right]^{\prime}, \ldots,\left[r_{m}\right]^{\prime}$ with a right action of $\mathrm{SL}_{2}(\mathbb{Z})$, which is given by $\left[r_{i}\right]^{\prime} . g=\left[r_{j}\right]^{\prime}$, where $\Gamma_{0}(N) r_{j}=\Gamma_{0}(N) r_{i} g$. We extend the notation by writing $[\gamma]^{\prime}=\left[\Gamma_{0}(N) \gamma\right]^{\prime}=\left[r_{i}\right]^{\prime}$, where $\gamma \in \Gamma_{0}(N) r_{i}$. Then the right action of $\Gamma_{0}(N)$ is simply $[\gamma]^{\prime} . g=[\gamma g]^{\prime}$.

Theorem 1.1.2 implies that $\mathrm{SL}_{2}(\mathbb{Z})$ is generated by the two matrices $\sigma=$ $\left(\begin{array}{rr}0 & -1 \\ 1 & 0\end{array}\right)$ and $\tau=\left(\begin{array}{rr}1 & -1 \\ 1 & 0\end{array}\right)$. Note that $\sigma=S$ from Theorem 1.1.2 and $\tau=T S$, so $T=\tau \sigma \in\langle\sigma, \tau\rangle$.

The following theorem provides us with a finite presentation for the space $\mathcal{M}_{2}\left(\Gamma_{0}(N)\right)$ of modular symbols.

Theorem 3.3.4 (Manin). Consider the quotient M of the free abelian group on Manin symbols $\left[r_{0}\right]^{\prime}, \ldots,\left[r_{m}\right]^{\prime}$ modulo the subgroup generated by the elements (for all i):

$$
\left[r_{i}\right]^{\prime}+\left[r_{i}\right]^{\prime} \sigma \quad \text { and } \quad\left[r_{i}\right]^{\prime}+\left[r_{i}\right]^{\prime} \tau+\left[r_{i}\right]^{\prime} \tau^{2}
$$

and modulo any torsion. Then there is an isomorphism $\Psi: M \xrightarrow{\sim} \mathbb{M}_{2}\left(\Gamma_{0}(N)\right)$ given by $\left[r_{i}\right]^{\prime} \mapsto\left[r_{i}\right]=r_{i}\{0, \infty\}$.

Proof. We will only prove that Ψ is surjective; the proof that Ψ is injective requires much more work and will be omitted from this book (see [Man72, §1.7] for a complete proof). [[Todo: And reference my book with Ribet, or Wiese's work?]]

Proposition 3.3.2 implies that Ψ is surjective, assuming that Ψ is well defined. We next verify that Ψ is well defined, i.e. that the listed two and three term relations hold in the image. To see that the first relation holds, note that

$$
\begin{aligned}
{\left[r_{i}\right]+\left[r_{i}\right] \sigma } & =\left\{r_{i}(0), r_{i}(\infty)\right\}+\left\{r_{i} \sigma(0), r_{i} \sigma(\infty)\right\} \\
& =\left\{r_{i}(0), r_{i}(\infty)\right\}+\left\{r_{i}(\infty), r_{i}(0)\right\} \\
& =0
\end{aligned}
$$

For the second relation we have

$$
\begin{aligned}
{\left[r_{i}\right]+\left[r_{i}\right] \tau+\left[r_{i}\right] \tau^{2} } & =\left\{r_{i}(0), r_{i}(\infty)\right\}+\left\{r_{i} \tau(0), r_{i} \tau(\infty)\right\}+\left\{r_{i} \tau^{2}(0), r_{i} \tau^{2}(\infty)\right\} \\
& =\left\{r_{i}(0), r_{i}(\infty)\right\}+\left\{r_{i}(\infty), r_{i}(1)\right\}+\left\{r_{i}(1), r_{i}(0)\right\} \\
& =0
\end{aligned}
$$

Example 3.3.5. By default SAGE computes modular symbols spaces over \mathbb{Q}, i.e., $\mathbb{M}_{2}\left(\Gamma_{0}(N) ; \mathbb{Q}\right) \cong \mathbb{M}_{2}\left(\Gamma_{0}(N)\right) \otimes \mathbb{Q}$. SAGE represents (weight 2) Manin symbols as pairs (c, d). Here c, d are integers that satisfy $0 \leq c, d<N$; they define a point $(c: d) \in \mathbb{P}^{1}(\mathbb{Z} / N \mathbb{Z})$, hence a right coset of $\Gamma_{0}(N)$ in $\mathrm{SL}_{2}(\mathbb{Z})$ (see Proposition 3.3.1).

Create $\mathbb{M}_{2}\left(\Gamma_{0}(N) ; \mathbb{Q}\right)$ in SAGE by typing ModularSymbols $(N, 2)$. We then use the SAGE command manin_generators to enumerate a list of generators $\left[r_{0}\right], \ldots,\left[r_{n}\right]$ as in Theorem 3.3.4 for several spaces of modular symbols.

```
sage: M = ModularSymbols(2,2)
sage: M
Full Modular Symbols space for Gamma_0(2) of weight 2 with
sign O and dimension 1 over Rational Field
sage: M.manin_generators()
[(0,1), (1,0), (1,1)]
sage: M = ModularSymbols(3,2)
sage: M.manin_generators()
[(0,1), (1,0), (1,1), (1,2)]
sage: M = ModularSymbols(6,2)
sage: M.manin_generators()
[(0,1), (1,0), (1,1), (1,2), (1,3), (1,4), (1,5), (2,1),
    (2,3), (2,5), (3,1), (3,2)]
```

Given $x=(c, d)$, the command x.lift_to_sl2z(N) finds an element [a, b, c^{\prime}, d^{\prime}] of $\mathrm{SL}_{2}(\mathbb{Z})$ whose lower two entries are congruent to (c, d) modulo N.

```
sage: M = ModularSymbols(2,2)
sage: [x.lift_to_sl2z(2) for x in M.manin_generators()]
[[1, 0, 0, 1], [0, -1, 1, 0], [0, -1, 1, 1]]
sage: M = ModularSymbols(6,2)
sage: x = M.manin_generators() [9]
sage: x
(2,5)
sage: x.lift_to_sl2z(6)
[1, 2, 2, 5]
```

The manin_basis command returns a list of indices into the Manin generator list such that the corresponding symbols form a basis for the quotient of the \mathbb{Q}-vector space spanned by Manin symbols modulo the 2 and 3 -term relations of Theorem 3.3.4.

```
sage: M = ModularSymbols(2,2)
sage: M.manin_basis()
[1]
sage: [M.manin_generators()[i] for i in M.manin_basis()]
[(1,0)]
sage: M = ModularSymbols(6,2)
sage: M.manin_basis()
[1, 10, 11]
sage: [M.manin_generators()[i] for i in M.manin_basis()]
[(1,0), (3,1), (3,2)]
```

Thus, e.g., every element of $\mathbb{M}_{2}\left(\Gamma_{0}(6)\right)$ is a \mathbb{Q}-linear combination of the symbols $[(1,0)],[(3,1)]$, and $[(3,2)]$. We can write each of these as a modular symbol using the modular_symbol_rep function.

```
sage: M.basis()
((1,0), (3,1), (3,2))
sage: [x.modular_symbol_rep() for x in M.basis()]
[{Infinity,0}, {0,1/3}, {-1/2,-1/3}]
```

The manin_gens_to_basis function returns a matrix whose rows express each Manin symbol generator in terms of the subset of Manin symbols that forms a basis (as returned by manin_basis.

```
sage: M = ModularSymbols(2,2)
sage: M.manin_gens_to_basis()
[-1]
[ 1]
[ 0]
```

Since the basis is $(1,0)$ this means that in $\mathbb{M}_{2}\left(\Gamma_{0}(2) ; \mathbb{Q}\right)$, we have $[(0,1)]=$ $-[(1,0)]$ and $[(1,1)]=0$. (Since no denominators are involved, we have in fact computed a presentation of $\mathbb{M}_{2}\left(\Gamma_{0}(2) ; \mathbb{Z}\right)$.)

Convert a Manin symbol $x=(c, d)$ to an element of a modular symbols space M, use $\mathrm{M}(\mathrm{xx})$:

```
sage: M = ModularSymbols(2,2)
sage: x = (1,0); M(x)
(1,0)
sage: M( (3,1) ) # entries are reduced modulo $2$ first
0
sage: M( (10,19) )
-(1,0)
```

Next consider $\mathbb{M}_{2}\left(\Gamma_{0}(6) ; \mathbb{Q}\right)$:

```
sage: M = ModularSymbols(6,2)
sage: M.manin_gens_to_basis()
[-1 0
[ llll
[ 0}0
[ [\begin{array}{lll}{0}&{-1}&{1}\end{array}]
[ [001 0]
[ [001 1]
[ [0 0 0]
[ [0 1-1]
[ 0 0 0 -1]
[ 00 1-1]
[ 0
[ 0 0 1]
```

Recalling that our choice of basis for $\mathbb{M}_{2}\left(\Gamma_{0}(6) ; \mathbb{Q}\right)$ is $[(1,0)],[(3,1)],[(3,2)]$. Thus, e.g., first row of this matrix says that $[(0,1)]=-[(1,0)]$, and the fourth row asserts that $[(1,2)]=-[(3,1)]+[(3,2)]$.

```
sage: M = ModularSymbols(6,2)
sage: M((0,1))
-(1,0)
sage: M((1,2))
-(3,1) + (3,2)
```

