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3.2 Modular Symbols

Modular symbols provide a “combinatorial” and computable presentation of
H1(X0(N), Z) in terms of paths between elements of P1(Q).

We denote the modular symbol defined by a pair α, β ∈ P1(Q) by {α, β}. As
illustrated in Figure 3.2.1, we view this modular symbol as the homology class,
relative to the cusps, of a (geodesic) path from α to β in h∗. The homology
group H1(X0(N), Z; {cusps}) of X0(N) relative to the cusps is an enlargement
of the usual homology group, in that we allow paths with endpoints in the cusps
instead of restricting to closed loops.
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Figure 3.2.1: The modular symbols {α, β} and {0,∞}.

Modular symbols satisfy the following (homology) relations: if α, β, γ ∈
Q ∪ {∞}, then

{α, β} + {β, γ} + {γ, α} = 0.

Furthermore, the space of modular symbols is torsion free, so

{α, α} = 0 and {α, β} = −{β, α}.

Let M2 be the free abelian group with basis the set of symbols {α, β} modulo
the 3-term homology relations above and modulo any torsion. Define a left
action of GL2(Q) on M2 by letting g ∈ GL2(Q) act by

g{α, β} = {g(α), g(β)},

and g acts on α and β via the corresponding linear fractional transformation.
The space M2(Γ0(N)) of modular symbols for Γ0(N) is the quotient of M2 by
the submodule generated by the infinitely many elements of the form x − g(x),
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for x in M2 and g in Γ0(N), and modulo any torsion. A modular symbol for
Γ0(N) is an element of this space. We frequently denote the equivalence class
that defines a modular symbol by giving a representative element.

Example 3.2.1. Some modular symbols are 0 no matter what the level N is!
For example, since γ = ( 1 1

0 1
) ∈ Γ0(N), we have

{∞, 0} = {γ(∞), γ(0)} = {∞, 1},

so

0 = {∞, 1} − {∞, 0} = {∞, 1}+ {0,∞} = {0,∞} + {∞, 1} = {0, 1}.

See Exercise 3.2 for a generalization of this observation.

There is a natural homomorphism

ϕ : M2(Γ0(N)) → H1(X0(N), {cusps}, Z) (3.2.1)

that sends a formal linear combination of geodesic paths in the upper half plane
to their image as paths on X0(N). In [Man72] Manin proved that (3.2.1) is an
isomorphism (this is a fairly involved topological argument).

Manin also identified the subspace of M2(Γ0(N)) that is sent isomorphically
onto H1(X0(N), Z). Let B2(Γ0(N)) denote the free abelian group whose basis
is the finite set C(Γ0(N)) = Γ0(N)\P1(Q) of cusps for Γ0(N). The boundary
map

δ : M2(Γ0(N)) → B2(Γ0(N))

sends {α, β} to {β} − {α}, where {β} denotes the basis element of B2(Γ0(N))
corresponding to β ∈ P1(Q). The kernel S2(Γ0(N)) of δ is the subspace of
cuspidal modular symbols. Thus an element of S2(Γ0(N)) can be thought of
as a linear combination of paths in h∗ whose endpoints are cusps, and whose
images in X0(N) are homologous to a Z-linear combination of closed paths.

Theorem 3.2.2 (Manin). The map ϕ given above induces a canonical isomorphism

S2(Γ0(N)) ∼= H1(X0(N), Z).

For any (commutative) ring R let

M2(Γ0(N), R) = M2(Γ0(N)) ⊗Z R,

and

S2(Γ0(N), R) = S2(Γ0(N)) ⊗Z R.

Example 3.2.3. We illustrate modular symbols in the case when N = 11.
Using SAGE, which implements the Manin symbols algorithm that we describe
below over Q, we find that M2(Γ0(11), Q) has basis {∞, 0}, {−1/8, 0}, {−1/9, 0}:
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sage: set_modsym_print_mode (’modular’)

sage: M = ModularSymbols(11, 2)

sage: M.basis()

({Infinity,0}, {-1/8,0}, {-1/9,0})

The integral homology H1(X0(11), Z) corresponds to the abelian subgroup generated
by {−1/8, 0} and {−1/9, 0}.

sage: S = M.cuspidal_submodule()

sage: S.integral_basis() # basis over ZZ.

({-1/8,0}, {-1/9,0})

3.3 Computing with Modular Symbols

3.3.1 Manin’s Trick

In this section, we describe a trick of Manin that proves that the space of
modular symbols can be computed.

The group Γ0(N) has finite index in SL2(Z) (see Exercise 1.6). Let r0, r1, . . . , rm

be distinct right coset representatives for Γ0(N) in SL2(Z), so that

SL2(Z) = Γ0(N)r0 ∪ Γ0(N)r1 ∪ · · · ∪ Γ0(N)rm,

where the union is disjoint. For example, when N is prime, a list of coset
representatives is

(

1 0
0 1

)

,

(

1 0
1 1

)

,

(

1 0
2 1

)

,

(

1 0
3 1

)

, . . . ,

(

1 0
N − 1 1

)

,

(

0 −1
1 0

)

.

Let

P1(Z/NZ) = {(a : b) : a, b ∈ Z/NZ, gcd(a, b, N) = 1 }/ ∼

where (a : b) ∼ (a′ : b′) if there is u ∈ (Z/NZ)∗ such that a = ua′, b = ub′.

Proposition 3.3.1. There is a bijection between P1(Z/NZ) and the right cosets
of Γ0(N) in SL2(Z), which sends a coset representative

(

a b
c d

)

to the class of
(c : d) in P1(Z/NZ).

Proof. See Exercise 3.3.

We now describe an observation of Manin (see [Man72, §1.5]) that is crucial
to making M2(Γ0(N)) computable. It allows us to write any modular symbol
{α, β} as a Z-linear combination of symbols of the form ri{0,∞}, where the
ri ∈ SL2(Z) are coset representatives as above. In particular, the finitely many
symbols r0{0,∞}, . . . rm{0,∞} generate M2(Γ0(N)).
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Proposition 3.3.2 (Manin). Let N be a positive integer and r0, . . . , rm a set
of right coset representatives for Γ0(N) in SL2(Z). Every {α, β} ∈ M2(Γ0(N))
is a Z-linear combination of r0{0,∞}, . . . rm{0,∞}.

We give two proofs of the proposition. The first is useful for actual computation
(see [Cre97a, §2.1.6]); the second seems less useful for computation but is easy
to understand conceptually (see [MTT86, §2]).

Continued Fractions Proof of Proposition 3.3.2. Because of the relation {α, β} =
{0, β}−{0, α}, it suffices to consider modular symbols of the form {0, b/a}, where
the rational number b/a is in lowest terms. Expand b/a as a continued fraction
and consider the successive convergents in lowest terms:

b−2

a−2

=
0

1
,

b−1

a−1

=
1

0
,

b0

a0

=
b0

1
, . . . ,

bn−1

an−1

,
bn

an

=
b

a

where the first two are included formally. Then

bkak−1 − bk−1ak = (−1)k−1,

so that

gk =

(

bk (−1)k−1bk−1

ak (−1)k−1ak−1

)

∈ SL2(Z).

Hence
{

bk−1

ak−1

,
bk

ak

}

= gk{0,∞} = ri{0,∞},

for some i, is of the required special form. Since

{0, b/a} = {0,∞} + {∞, b0} +

{

b0

1
,
b1

a1

}

+ · · · +

{

bn−1

an−1

,
bn

an

}

,

this completes the proof.

Inductive Proof of Proposition 3.3.2. As in the first proof it suffices to prove
the proposition for any symbol {0, b/a}, where b/a is in lowest terms. We will
induct on a ∈ Z≥0. If a = 0 then the symbol is {0,∞}, which corresponds to
the identity coset, so assume that a > 0. Find a′ ∈ Z such that

ba′ ≡ 1 (mod a);

then b′ = (ba′ − 1)/a ∈ Z so the matrix

δ =

(

b b′

a a′

)

is an element of SL2(Z). Thus δ = γ · rj for some right coset representative rj

and γ ∈ Γ0(N). Then

{0, b/a} − {0, b′/a′} = {b′/a′, b/a} =

(

b b′

a a′

)

· {0,∞} = rj{0,∞},

as elements of M2(Γ0(N)). By induction {0, b′/a′} is a linear combination of
symbols of the form rk{0,∞}, which completes the proof.
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Example 3.3.3. Let N = 11, and consider the modular symbol {0, 4/7}. We
have

4

7
= 0 +

1

1 + 1

1+ 1

3

,

so the partial convergents are

b−2

a−2

=
0

1
,

b−1

a−1

=
1

0
,

b0

a0

=
0

1
,

b1

a1

=
1

1
,

b2

a2

=
1

2
,

b3

a3

=
4

7
.

Thus, noting as in Example 3.2.1 that {0, 1} = 0, we have

{0, 4/7} = {0,∞} + {∞, 0}+ {0, 1}+ {1, 1/2}+ {1/2, 4/7}

=

(

1 −1
2 −1

)

{0,∞} +

(

4 1
7 2

)

{0,∞}

=

(

1 0
9 1

)

{0,∞} +

(

1 0
9 1

)

{0,∞}

= 2 ·

[(

1 0
9 1

)

{0,∞}

]

3.3.2 Manin symbols

As above, fix coset representatives r0, . . . , rm for Γ0(N) in SL2(Z). Consider
formal symbols [ri]

′ for i = 0, . . . , m. Let [ri] be the modular symbol ri{0,∞} =
{ri(0), ri(∞)}. We equip the symbols [r0]

′, . . . , [rm]′ with a right action of
SL2(Z), which is given by [ri]

′.g = [rj ]
′, where Γ0(N)rj = Γ0(N)rig. We extend

the notation by writing [γ]′ = [Γ0(N)γ]′ = [ri]
′, where γ ∈ Γ0(N)ri. Then the

right action of Γ0(N) is simply [γ]′.g = [γg]′.

Theorem 1.1.2 implies that SL2(Z) is generated by the two matrices σ =
(

0 −1

1 0

)

and τ =
(

1 −1

1 0

)

. Note that σ = S from Theorem 1.1.2 and τ = TS, so
T = τσ ∈ 〈σ, τ〉.

The following theorem provides us with a finite presentation for the space
M2(Γ0(N)) of modular symbols.

Theorem 3.3.4 (Manin). Consider the quotient M of the free abelian group
on Manin symbols [r0]

′, . . . , [rm]′ modulo the subgroup generated by the elements
(for all i):

[ri]
′ + [ri]

′σ and [ri]
′ + [ri]

′τ + [ri]
′τ2,

and modulo any torsion. Then there is an isomorphism Ψ : M
∼
−→ M2(Γ0(N))

given by [ri]
′ 7→ [ri] = ri{0,∞}.

Proof. We will only prove that Ψ is surjective; the proof that Ψ is injective
requires much more work and will be omitted from this book (see [Man72, §1.7]
for a complete proof). [[Todo: And reference my book with Ribet, or
Wiese’s work?]]
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Proposition 3.3.2 implies that Ψ is surjective, assuming that Ψ is well defined.
We next verify that Ψ is well defined, i.e. that the listed two and three term
relations hold in the image. To see that the first relation holds, note that

[ri] + [ri]σ = {ri(0), ri(∞)} + {riσ(0), riσ(∞)}

= {ri(0), ri(∞)} + {ri(∞), ri(0)}

= 0.

For the second relation we have

[ri] + [ri]τ + [ri]τ
2 = {ri(0), ri(∞)} + {riτ(0), riτ(∞)} + {riτ

2(0), riτ
2(∞)}

= {ri(0), ri(∞)} + {ri(∞), ri(1)} + {ri(1), ri(0)}

= 0

Example 3.3.5. By default SAGE computes modular symbols spaces over Q,
i.e., M2(Γ0(N); Q) ∼= M2(Γ0(N)) ⊗ Q. SAGE represents (weight 2) Manin
symbols as pairs (c, d). Here c, d are integers that satisfy 0 ≤ c, d < N ; they
define a point (c : d) ∈ P1(Z/NZ), hence a right coset of Γ0(N) in SL2(Z) (see
Proposition 3.3.1).

Create M2(Γ0(N); Q) in SAGE by typing ModularSymbols(N, 2). We then
use the SAGE command manin generators to enumerate a list of generators
[r0], . . . , [rn] as in Theorem 3.3.4 for several spaces of modular symbols.

sage: M = ModularSymbols(2,2)

sage: M

Full Modular Symbols space for Gamma_0(2) of weight 2 with

sign 0 and dimension 1 over Rational Field

sage: M.manin_generators()

[(0,1), (1,0), (1,1)]

sage: M = ModularSymbols(3,2)

sage: M.manin_generators()

[(0,1), (1,0), (1,1), (1,2)]

sage: M = ModularSymbols(6,2)

sage: M.manin_generators()

[(0,1), (1,0), (1,1), (1,2), (1,3), (1,4), (1,5), (2,1),

(2,3), (2,5), (3,1), (3,2)]

Given x=(c,d), the command x.lift to sl2z(N) finds an element [a,b,c’,d’]
of SL2(Z) whose lower two entries are congruent to (c, d) modulo N .
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sage: M = ModularSymbols(2,2)

sage: [x.lift_to_sl2z(2) for x in M.manin_generators()]

[[1, 0, 0, 1], [0, -1, 1, 0], [0, -1, 1, 1]]

sage: M = ModularSymbols(6,2)

sage: x = M.manin_generators()[9]

sage: x

(2,5)

sage: x.lift_to_sl2z(6)

[1, 2, 2, 5]

The manin basis command returns a list of indices into the Manin generator
list such that the corresponding symbols form a basis for the quotient of the
Q-vector space spanned by Manin symbols modulo the 2 and 3-term relations
of Theorem 3.3.4.

sage: M = ModularSymbols(2,2)

sage: M.manin_basis()

[1]

sage: [M.manin_generators()[i] for i in M.manin_basis()]

[(1,0)]

sage: M = ModularSymbols(6,2)

sage: M.manin_basis()

[1, 10, 11]

sage: [M.manin_generators()[i] for i in M.manin_basis()]

[(1,0), (3,1), (3,2)]

Thus, e.g., every element of M2(Γ0(6)) is a Q-linear combination of the symbols
[(1, 0)], [(3, 1)], and [(3, 2)]. We can write each of these as a modular symbol
using the modular symbol rep function.

sage: M.basis()

((1,0), (3,1), (3,2))

sage: [x.modular_symbol_rep() for x in M.basis()]

[{Infinity,0}, {0,1/3}, {-1/2,-1/3}]

The manin gens to basis function returns a matrix whose rows express
each Manin symbol generator in terms of the subset of Manin symbols that
forms a basis (as returned by manin basis.

sage: M = ModularSymbols(2,2)

sage: M.manin_gens_to_basis()

[-1]

[ 1]

[ 0]
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Since the basis is (1, 0) this means that in M2(Γ0(2); Q), we have [(0, 1)] =
−[(1, 0)] and [(1, 1)] = 0. (Since no denominators are involved, we have in fact
computed a presentation of M2(Γ0(2); Z).)

Convert a Manin symbol x = (c, d) to an element of a modular symbols
space M , use M(xx):

sage: M = ModularSymbols(2,2)

sage: x = (1,0); M(x)

(1,0)

sage: M( (3,1) ) # entries are reduced modulo $2$ first

0

sage: M( (10,19) )

-(1,0)

Next consider M2(Γ0(6); Q):

sage: M = ModularSymbols(6,2)

sage: M.manin_gens_to_basis()

[-1 0 0]

[ 1 0 0]

[ 0 0 0]

[ 0 -1 1]

[ 0 -1 0]

[ 0 -1 1]

[ 0 0 0]

[ 0 1 -1]

[ 0 0 -1]

[ 0 1 -1]

[ 0 1 0]

[ 0 0 1]

Recalling that our choice of basis for M2(Γ0(6); Q) is [(1, 0)], [(3, 1)], [(3, 2)].
Thus, e.g., first row of this matrix says that [(0, 1)] = −[(1, 0)], and the fourth
row asserts that [(1, 2)] = −[(3, 1)] + [(3, 2)].

sage: M = ModularSymbols(6,2)

sage: M((0,1))

-(1,0)

sage: M((1,2))

-(3,1) + (3,2)


