Computing Bernoulli Numbers

William Stein

(joint work with Kevin McGown of UCSD)

April 14, 2006

Bernoulli Numbers

Defined by Jacques Bernoulli in posthumous work Ars conjectandi Bale, 1713.

v [∞] B

$$\frac{x}{e^{x}-1} = \sum_{n=0}^{D_{n}} \frac{B_{n}}{n!} x^{n}$$

$$B_{0} = 1, \quad B_{1} = -\frac{1}{2} \quad B_{2} = \frac{1}{6}, \quad B_{3} = 0, \quad B_{4} = -\frac{1}{30},$$

$$B_{5} = 0, \quad B_{6} = \frac{1}{42}, \quad B_{7} = 0, \quad B_{8} = -\frac{1}{30}, \quad B_{9} = 0,$$

・日、 (日、 (川)、 (川)、 (日)、 (日)、

Computing Bernoulli Numbers – say B₅₀₀

sage:	a =	<pre>maple('bernoulli(500)')</pre>	#	Wall	time:	1.35	
sage:	a =	<pre>maxima('bern(500)')</pre>	#	Wall	time:	0.81	
sage:	a =	<pre>maxima('burn(500)')</pre>	#	broke	en		
sage:	a =	<pre>magma('Bernoulli(500)')</pre>	#	Wall	time:	0.66	
sage:	a =	<pre>gap('Bernoulli(500)')</pre>	#	Wall	time:	0.53	
sage:	a =	mathematica('BernoulliB[500]	')	#W	time:	0.18	
cald	cbn	(http://www.bernoulli.org)	#		Time:	0.020	
sage:	a =	<pre>gp('bernfrac(500)')</pre>	#	Wall	time:	0.00 ?	' !

ting Bernoulli Numbers

World Records?

Largest one ever computed was B_{500000} by O. Pavlyk, which was done in Oct. 8, 2005, and whose numerator has 27332507 digits. Computing B_{10^7} is the next obvious challenge.

Bernoulli numbers are really big!

Sloane Sequence A103233:

Here a(n) = Number of digits of numerator of B_{10^n} .

<ロト イクト イヨン ヨークへで William Stein Computing Bernoulli Numbers

Stark's Observation (after talk)

Use Stirling's formula, which, ammusingly, involves small Bernoulli numbers:

$$\log(\Gamma(z)) = \frac{1}{\log(2\pi)} + \left(z - \frac{1}{2}\right)\log(z) - z + \sum_{n=1}^{\infty} \frac{B_{2n}}{2n(2n-1)z^{2n-1}}$$

This would make computation of the number of digits of the numerator of B_n pretty easy. See http://mathworld.wolfram.com/StirlingsSeries.html

William Stein Co

Connection with Riemann Zeta Function

For integers $n \ge 2$ we have

$$\zeta(2n) = \frac{(-1)^{n+1}(2\pi)^{2n}}{2 \cdot (2n)!} B_{2n}$$

$$\zeta(1-n) = -\frac{B_n}{n}$$

So for $n \ge 2$ even:

$$|B_n| = \frac{2 \cdot n!}{(2\pi)^n} \zeta(n) = \pm \frac{n}{\zeta(1-n)}$$

もうない 神 ふかく 前々 ふしゃ

Computing Bernoulli Numbers – say B₁₀₀₀

sage:	a =	<pre>maple('bernoulli(1000)')</pre>	#	Wall	time:	9.27
sage:	a =	<pre>maxima('bern(1000)')</pre>	#	Wall	time:	5.49
sage:	a =	<pre>magma('Bernoulli(1000)')</pre>	#	Wall	time:	2.58
sage:	a =	<pre>gap('Bernoulli(1000)')</pre>	#	Wall	time:	5.92
sage:	a =	mathematica('BernoulliB[1000)]	') #W	time:	1.01
cal	cbn	(http://www.bernoulli.org)	#		Time:	0.06
sage:	a =	<pre>gp('bernfrac(1000)')</pre>	#	Wall	time:	0.00?

NOTE: Mathematica 5.2 is much faster than Mathematica 5.1 at computing Bernoulli numbers; it takes only about twice as long as PARI (for n > 1000), though amusingly Mathematica 5.2 is *slow* for $n \le 1000$!

イロトイクトイミトイヨト ヨーのへの William Stein Computing Bernoulli Numbers

Number of Digits

Clausen and von Staudt: $d_n = \operatorname{denom}(B_n) = \prod_{p-1|m} p.$ Number of digits of numerator is

$$\lceil \log_{10}(d_n \cdot |B_n|) \rceil$$

But

$$\log(|B_n|) = \log\left(\frac{2n!}{(2\pi)^n}\zeta(n)\right)$$

= log(2) + $\sum_{m=1}^n \log(m) - n\log(2) - n\log(\pi) + \log(\zeta(n)),$

and $\zeta(\textit{n}) \sim 1.$ This quickly gives new entries for Sloane's sequence:

 $a(10^7) = 57675292$ and $a(10^8) = 676752609$.

William Stein Computing Bernoulli Number

Tables?

I couldn't find any interesting tables at all!

But from

http://mathworld.wolfram.com/BernoulliNumber.html "The only known Bernoulli numbers B_n having prime numerators occur for n=10, 12, 14, 16, 18, 36, and 42 (Sloane's A092132) [...] with no other primes for $n \le 55274$ (E. W. Weisstein, Apr. 17, 2005)."

So maybe 55274 is the biggest enumeration of B_k 's ever? Not anymore... since I used SAGE to script a bunch of PARI's on my new 64GB 16-core computer, and made a table of B_k for $k \leq 100000$. It's very compressed but takes over 3.4GB (and is "stuck" in that broken computer.)

William Stein Computing Bernoulli N

Math 168 Student Project

Figure out why PARI is vastly faster than anything else at computing B_k and explain it to me. Kevin McGown rose to the challenge.

/* assume n even > 0. Faster than standard bernfrac for n >= 6 */ GEM bernfrac_using_zeta(long n)

pari_sp av = avma; GEM iz, a, d, D = divisors(utoipos(n/2)); long i, prec, 1 = lg(D); double t, u;

d = utoipos(6); /* 2 * 3 */
for (i = 2; i < 1; i++) /* skip 1 */
{ /* Glausen - von Staudt */
ulong p = 2*iou(gel(0,i)) * 1;
if (isprime(utoipos(p))) d = muliu(d, p);</pre>

} /* 1.712086 = ??? */ /* i.12000 - iii */ t = log(gtodouble(d)) + (n + 0.5) * log(n) - n*(1+log2PI) + 1.712086; u = t / (LOG2*BITS_IN_LONG); prec = (long)ceil(u);

What Does PARI Do?

William Stein Computing B

Use

$$|B_n| = \frac{2n!}{(2\pi)^n} \zeta(n$$

and tightly bound precisions needed to compute each quantity.

 $\,>\,$ (1) Do you know who came up with or implemented the idea

in PARI for computing Bernoulli numbers quickly by >

approximating the zeta function and using Classen > > and von Staudt's identification of the denominator

> of the Bernoulli number?

Henri did, and wrote the initial implementation. I wrote the current one (same idea, faster details).

The idea independently came up (Bill Daly) on pari-dev as a speed up to Euler-Mac Laurin formulae for zeta or gamma/loggamma (that specific one has not been tested/ implemented so far).

William Stein Computing Bernoulli Numbe

Kevin McGown Project

The Algorithm: Suppose $n \ge 2$ is even.

1.
$$K = \frac{2n!}{(2\pi)^n}$$

2. $d = \prod_{p-1|n} p$
3. $N = \left[(Kd)^{1/(n-1)} \right]$
4. $z = \prod_{p \le N} (1 - p^{-n})^{-1}$
5. $a = (-1)^{n/2+1} \left[dKz + C \right]$
6. $B_n = \frac{a}{d}$

Buhler et al.

Basically, compute $B_k \pmod{p}$ for all $k \leq p$ and p up to $16 \cdot 10^6$ using clever Newton iteration to find $1/(\bar{e^{\times}}-1).$ In particular, "if g is an approximation to f^{-1} then ... $h = 2g - fg^{2n}$ is twice as good. (They also use a few other tricks.)

Compute $1/\zeta(n)$ to VERY high precision

/* 1/zeta(n) using Euler product. Assume n > 0.
 * if (lba != 0) it is log(bit_accuracy) we _really_ require */

EN nv_szeta_euler(long n, double lba, long prec) GEN z, res = cgetr(prec); pari_sp av0 = avma; byteptr d = diffptr + 2; double A = n / (LOG2+BITS_IN_LONG), D; long p, lim;

if (!lba) lba = bit_accuracy_mul(prec, LOG2); D = exp((lba - log(n-1)) / (n-1)); lim = 1 + (long)ceil(D); maxprime_check((ulong)lim);

prec++;
z = gsub(gen_1, real2n(-n, prec));
for (p = 3; p <= lim;)</pre> long 1 = prec + 1 - (long)floor(& * log(p)); GEN h;

}
affrr(z, res); avma = av0; return res;

http://www.bernoulli.org/

Bernd C. Kellner's program at http://www.bernoulli.org/ (2002-2004) also appears to uses

William Stein Co

 $|B_n| = \frac{2n!}{(2\pi)^n}\,\zeta(n)$

but Kellner's program is closed source and noticeably slower than PARI (2.2.10.alpha). He claims his program "calculates Bernoulli numbers up to index $n = 10^6$ extremely quickly."

Also: Maxima's documentation claims to have a function burn that uses zeta, but it doesn't work (for me).

William Stein Comp

What About Generalized Bernoulli Numbers?

- (2) Has a generalization to generalized
- Bernoulli numbers attached to an integer
- and Dirichlet character been written
- down or implemented? >

Not to my knowledge.

Cheers, Karim.

>

> >

Generalized Bernoulli Numbers

Defined in 1958 by H.W. Leopoldt.

$$\sum_{r=1}^{f-1} \chi(r) \ \frac{te^{rt}}{e^{ft}-1} = \sum_{n=0}^{\infty} B_{n,\chi} \ \frac{t^n}{n!}$$

Here $\chi : (\mathbb{Z}/m\mathbb{Z}) \to \mathbb{C}$ is a Dirichlet character.

These give values at negative integers of associated Dirichlet L-functions:

 $L(1-n,\chi)=-\frac{B_{n,\chi}}{n}$

Kubota-Leopoldt p-adic L-function (p-adic interpolation)...

The Torsion Subgroup of $J_1(p)$

Let $J_1(p)$ be the Jacobian of the modular curve $X_1(p)$. Conjecture (Stein)

#.

$$\mathcal{U}_1(p)(\mathbb{Q})_{\mathrm{tor}} = rac{p}{2^{p-3}} \cdot \prod_{\chi
eq 1} B_{2,\chi},$$

where the χ have modulus p. (Equivalently, the torsion subgroup is generated by the rational cuspidal subgroup-see Kubert-Lang.) (This is a generalization of Ogg's conjecture for $J_0(p)$, which Mazur proved.)

Analytic Method

Is there an analytic method to compute $B_{n,\chi}$ that is impressively fast in practice like the one Cohen/Kellner/etc. invented for B_n ?

YES.

$B_{n,\psi}$ Very Important to Computing Modular Forms

$$\begin{split} \overline{e}_{k,\chi,\psi}(q) &= c_0 + \sum_{m \ge 1} \left(\sum_{n|m} \psi(n) \cdot \chi(m/n) \cdot n^{k-1} \right) q^m \in \mathbb{Q}(\chi,\psi)[[q]], \\ \text{where} \\ \begin{cases} 0 & \text{if } L = \operatorname{cond}(\chi) > 1, \end{cases} \end{split}$$

Theorem

The (images of) the Eisenstein series above generate the Eisenstein subspace $E_k(N, \varepsilon)$, where $N = L \cdot \operatorname{cond}(\psi)$ and $\varepsilon = \chi/\psi$.

 $\begin{cases} -\frac{B_{k,\psi}}{2k} & \text{if } L=1. \end{cases}$

Compute $B_{n,\chi}$? **One way.**

Let N=modulus of χ , assumed > 1.

- 1. Compute $g = x/(e^{Nx} 1) \in \mathbb{Q}[[x]]$ to precision $O(x^{n+1})$ by computing $e^{Nx} 1 = \sum_{m \ge 1} N^m x^m / m!$ to precision $O(x^{n+2})$, and computing the inverse $1/(e^{Nx} 1)$, e.g., using Newton iteration as in Buhler et al.
- 2. For each a = 1, ..., N 1, compute $f_a = g \cdot e^{ax} \in \mathbb{Q}[[x]]$, to precision $O(x^{k+1})$. This requires computing $e^{ax} = \sum_{m \ge 0} a^m x^m / m!$ to precision $O(x^{k+1})$.

3. Then for $j \leq n$, we have $B_{j,\varepsilon} = j! \cdot \sum_{a=1}^{N-1} \varepsilon(a) \cdot c_j(f_a)$, where $c_j(f_a)$ is the coefficient of x^j in f_a .

This requires arithmetic only in Q, except in the last easy step.

Analytic Method

Assume χ primitive now.

$$K_{n,\chi} = (-1)^{n-1} 2n! \left(\frac{N}{2i}\right)^n$$

then

$$B_{n,\chi} = \frac{K_{n,\chi}}{\pi^n \,\tau(\chi)} \, L(n,\overline{\chi})$$

There is a simple formula for a d such that $d \cdot B_{n,\chi}$ is an algebraic integer (analogue of Clausen and von Staudt). For *n* large we can compute $L(n, \overline{\chi})$ very quickly to high precision; hence we can compute $B_{n,\chi}$ (at least if $\mathbb{Q}(\chi)$ isn't too big, e.g., $\mathbb{Q}(\chi) = \mathbb{Q}$ wouldn't be a problem). (Note, for small *n* that $L(n, \overline{\chi})$ converges slowly; but then just use the power series algorithm.) Compute the conjugates of $d \cdot B_{n,\chi}$ approximately; compute minimal polynomial over \mathbb{Z} ; factor that over $\mathbb{Q}(\chi)$, then recognize the right root from the numerical approximation to $d \cdot B_{n,\chi}$.

William Stein Co

lf