Bernoulli Numbers

Computing Bernoulli Numbers

William Stein
(joint work with Kevin McGown of UCSD)

April 14, 2006

Connection with Riemann Zeta Function

For integers $n \geq 2$ we have

$$
\begin{aligned}
\zeta(2 n) & =\frac{(-1)^{n+1}(2 \pi)^{2 n}}{2 \cdot(2 n)!} B_{2 n} \\
\zeta(1-n) & =-\frac{B_{n}}{n}
\end{aligned}
$$

So for $n \geq 2$ even:

$$
\left|B_{n}\right|=\frac{2 \cdot n!}{(2 \pi)^{n}} \zeta(n)= \pm \frac{n}{\zeta(1-n)} .
$$

World Records?

Largest one ever computed was $B_{5000000}$ by O. Pavlyk, which was done in Oct. 8, 2005, and whose numerator has 27332507 digits. Computing $B_{10^{7}}$ is the next obvious challenge.

Bernoulli numbers are really big!
Sloane Sequence A103233:

n	0	1	2	3	4	5	6	7
$a(\mathrm{n})$	1	1	83	1779	27691	376772	4767554	$? ? ?$

Here $a(n)=$ Number of digits of numerator of $B_{10^{n}}$.

Defined by Jacques Bernoulli in posthumous work Ars conjectandi Bale, 1713.

$$
\frac{x}{e^{x}-1}=\sum_{n=0}^{\infty} \frac{B_{n}}{n!} x^{n}
$$

$$
\begin{array}{ll}
B_{0}=1, & B_{1}=-\frac{1}{2} \quad B_{2}=\frac{1}{6}, \quad B_{3}=0, \quad B_{4}=-\frac{1}{30}, \\
B_{5}=0, & B_{6}=\frac{1}{42}, \quad B_{7}=0, \quad B_{8}=-\frac{1}{30}, \quad B_{9}=0,
\end{array}
$$

sage: $\mathrm{a}=$ maple('bernoulli(1000)') \# Wall time: 9.27
sage: $\mathrm{a}=$ maxima('bern(1000)') \# Wall time: 5.49
sage: $\mathrm{a}=\operatorname{magma}\left({ }^{\prime}\right.$ Bernoulli(1000)') \# Wall time: 2.58
sage: a = gap('Bernoulli(1000)') \# Wall time: 5.92
sage: $\mathrm{a}=$ mathematica('BernoulliB[1000]') \#W time: 1.01
calcbn (http://www.bernoulli.org) \# Time: 0.06
sage: $\mathrm{a}=\mathrm{gp}($ 'bernfrac (1000)') \# Wall time: 0.00?!
NOTE: Mathematica 5.2 is much faster than Mathematica 5.1 at computing Bernoulli numbers; it takes only about twice as long as PARI (for $n>1000$), though amusingly Mathematica 5.2 is slow for $n \leq 1000$!

Computing Bernoulli Numbers - say B_{500}

sage: a = maple('bernoulli(500)')	\# Wall time: 1.35
sage: a = maxima('bern(500)')	\# Wall time: 0.81
sage: a = maxima('burn(500)')	\# broken...
sage: a = magma('Bernoulli(500)')	\# Wall time: 0.66
sage: a = gap('Bernoulli(500)')	\# Wall time: 0.53
sage: a = mathematica('BernoulliB[500]') \#W time: 0.18	
calcbn (http://www.bernoulli.org)	\#
sage: Time: 0.020	

Number of Digits

Clausen and von Staudt: $d_{n}=\operatorname{denom}\left(B_{n}\right)=\prod_{p-1 \mid m} p$.
Number of digits of numerator is

$$
\left\lceil\log _{10}\left(d_{n} \cdot\left|B_{n}\right|\right)\right\rceil
$$

But

$$
\begin{aligned}
\log \left(\left|B_{n}\right|\right) & =\log \left(\frac{2 n!}{(2 \pi)^{n}} \zeta(n)\right) \\
& =\log (2)+\sum_{m=1}^{n} \log (m)-n \log (2)-n \log (\pi)+\log (\zeta(n)),
\end{aligned}
$$

and $\zeta(n) \sim 1$. This quickly gives new entries for Sloane's sequence:

$$
a\left(10^{7}\right)=57675292 \quad \text { and } \quad a\left(10^{8}\right)=676752609
$$

Stark's Observation (after talk)

Use Stirling's formula, which, ammusingly, involves small Bernoulli numbers:
$\log (\Gamma(z))=\frac{1}{\log (2 \pi)}+\left(z-\frac{1}{2}\right) \log (z)-z+\sum_{n=1}^{\infty} \frac{B_{2 n}}{2 n(2 n-1) z^{2 n-1}}$.
This would make computation of the number of digits of the numerator of B_{n} pretty easy. See
http://mathworld.wolfram.com/StirlingsSeries.html

Tables?

I couldn't find any interesting tables at all!

But from

http://mathworld.wolfram.com/BernoulliNumber.html
"The only known Bernoulli numbers B_{n} having prime numerators occur for $\mathrm{n}=10,12,14,16,18,36$, and 42 (Sloane's A092132) [...] with no other primes for $n \leq 55274$ (E. W. Weisstein, Apr. 17, 2005)."

So maybe 55274 is the biggest enumeration of B_{k} 's ever? Not anymore... since I used SAGE to script a bunch of PARI's on my new 64GB 16-core computer, and made a table of B_{k} for $k \leq 100000$. It's very compressed but takes over 3.4 GB (and is "stuck" in that broken computer.)

Buhler et al.

Basically, compute $B_{k}(\bmod p)$ for all $k \leq p$ and p up to $16 \cdot 10^{6}$ using clever Newton iteration to find $1 /\left(e^{x}-1\right)$. In particular, "if g is an approximation to f^{-1} then $\ldots h=2 g-f g^{2 "}$ is twice as good. (They also use a few other tricks.)

Math 168 Student Project

Figure out why PARI is vastly faster than anything else at computing B_{k} and explain it to me.
Kevin McGown rose to the challenge.
$\operatorname{cen}^{\text {Gessume }} \mathrm{n}$ even >0. Fastor than standard berrifrac for $\mathrm{n}>=6$ *

double t, u;
dit

* $1.712086=$? ? ? * *

$a=$ roundr (mulir(d, bernreal_using_zeta $(\mathrm{n}, \mathrm{iz}$, prec $))$)
return gerepilecopy (av, mkfrac(a, d$)$);

Compute $1 / \zeta(n)$ to VERY high precision

```
* 1/2eta() using Euler product. Assumen n )
```

* 1/2eta() using Euler product. Assumen n)
* if (1ba != 0) it is iog(bit__ccuracy) we _really_ require *
* if (1ba != 0) it is iog(bit__ccuracy) we _really_ require *
GEN
GEN
GENz, res - cgotr(prec);

```
    GENz, res - cgotr(prec);
```



```
    cosm,
```

 cosm,
 long p, 1im;
 long p, 1im;
 if (1lba) 1ba = bitaccuracy.mul(prre, LOC2);
    ```
    if (1lba) 1ba = bitaccuracy.mul(prre, LOC2);
```



```
    c
```

```
    c
```



```
    for (p = 3; p<= 1in;)
```

 for (p = 3; p<= 1in;)
 10ng 1= prec + 1-(long)floor(A P log(p));
 10ng 1= prec + 1-(long)floor(A P log(p));
 *
    ```
        *
```



```
        c
```

 c
 c
 c
 nexT_Prine_viadifF(p,d);
 nexT_Prine_viadifF(p,d);
 d affrr(z, res); avma = avo; return
d affrr(z, res); avma = avo; return
inv_szeta_evler(1ong n, double 1ba, long prec)
inv_szeta_evler(1ong n, double 1ba, long prec)
} affrr(z, res); avma = avo; return res;

```
} affrr(z, res); avma = avo; return res;
```


What Does PARI Do?

Use

$$
\left|B_{n}\right|=\frac{2 n!}{(2 \pi)^{n}} \zeta(n)
$$

and tightly bound precisions needed to compute each quantity.
(1) Do you know who came up with or implemented the idea in PARI for computing Bernoulli numbers quickly by approximating the zeta function and using Classen and von Staudt's identification of the denominator of the Bernoulli number?

Henri did, and wrote the initial implementation.
I wrote the current one (same idea, faster details)
The idea independently came up (Bill Daly) on pari-dev as a speed up to Euler-Mac Laurin formulae for zeta or gamma/loggamma (that specific one has not been tested/ implemented so far).

http://www.bernoulli.org/

Bernd C. Kellner's program at http://www.bernoulli.org/ (2002-2004) also appears to uses

$$
\left|B_{n}\right|=\frac{2 n!}{(2 \pi)^{n}} \zeta(n)
$$

but Kellner's program is closed source and noticeably slower than PARI (2.2.10.alpha). He claims his program "calculates Bernoulli numbers up to index $n=10^{6}$ extremely quickly."

Also: Maxima's documentation claims to have a function burn that uses zeta, but it doesn't work (for me)

Kevin McGown Project

The Algorithm: Suppose $n \geq 2$ is even.

1. $K=\frac{2 n!}{(2 \pi)^{n}}$
2. $d=\prod_{p-1 \mid n} p$
3. $N=\left\lceil(K d)^{1 /(n-1)}\right\rceil$
4. $z=\prod_{p \leq N}\left(1-p^{-n}\right)^{-1}$
5. $a=(-1)^{n / 2+1}\lceil d K z\rceil$
6. $B_{n}=\frac{a}{d}$

What About Generalized Bernoulli Numbers?
(2) Has a generalization to generalized Bernoulli numbers attached to an integer and Dirichlet character been written down or implemented?

Not to my knowledge.
Cheers,
Karim.

Generalized Bernoulli Numbers

Defined in 1958 by H. W. Leopoldt.

$$
\sum_{r=1}^{f-1} \chi(r) \frac{t e^{r t}}{e^{f t}-1}=\sum_{n=0}^{\infty} B_{n, \chi} \frac{t^{n}}{n!}
$$

Here $\chi:(\mathbb{Z} / m \mathbb{Z}) \rightarrow \mathbb{C}$ is a Dirichlet character.
These give values at negative integers of associated Dirichlet L-functions:

$$
L(1-n, \chi)=-\frac{B_{n, \chi}}{n}
$$

Kubota-Leopoldt p-adic L-function (p-adic interpolation)...

Compute $B_{n, \chi}$? One way.

Let $N=$ modulus of χ, assumed >1.

1. Compute $g=x /\left(e^{N x}-1\right) \in \mathbb{Q}[[x]]$ to precision $O\left(x^{n+1}\right)$ by computing $e^{N x}-1=\sum_{m \geq 1} N^{m} x^{m} / m$! to precision $O\left(x^{n+2}\right)$, and computing the inverse $1 /\left(e^{N x}-1\right)$, e.g., using Newton iteration as in Buhler et al.
2. For each $a=1, \ldots, N-1$, compute $f_{a}=g \cdot e^{a x} \in \mathbb{Q}[[x]]$, to precision $O\left(x^{k+1}\right)$. This requires computing $e^{a x}=\sum_{m \geq 0} a^{m} x^{m} / m!$ to precision $O\left(x^{k+1}\right)$.
3. Then for $j \leq n$, we have $B_{j, \varepsilon}=j!\cdot \sum_{a=1}^{N-1} \varepsilon(a) \cdot c_{j}\left(f_{a}\right)$, where $c_{j}\left(f_{a}\right)$ is the coefficient of x^{j} in f_{a}.
This requires arithmetic only in \mathbb{Q}, except in the last easy step.

Analytic Method

Assume χ primitive now.
If

$$
K_{n, \chi}=(-1)^{n-1} 2 n!\left(\frac{N}{2 i}\right)^{n}
$$

then

$$
B_{n, \chi}=\frac{K_{n, \chi}}{\pi^{n} \tau(\chi)} L(n, \bar{\chi})
$$

There is a simple formula for a d such that $d \cdot B_{n, \chi}$ is an algebraic integer (analogue of Clausen and von Staudt).
For n large we can compute $L(n, \bar{\chi})$ very quickly to high precision; hence we can compute $B_{n, \chi}$ (at least if $\mathbb{Q}(\chi)$ isn't too big, e.g., $\mathbb{Q}(\chi)=\mathbb{Q}$ wouldn't be a problem). (Note, for small n that $L(n, \bar{\chi})$ converges slowly; but then just use the power series algorithm.) Compute the conjugates of $d \cdot B_{n, \chi}$ approximately; compute minimal polynomial over \mathbb{Z}; factor that over $\mathbb{Q}(\chi)$, then recognize the right root from the numerical approximation to $d \cdot B_{n, \chi}=$

