
Chapter 2

Modular Forms of Level 1

In this chapter we study in detail the structure of level 1 modular forms, i.e.,
modular forms on SL2(Z) = Γ0(1) = Γ1(1). We assume that you know some
complex analysis (e.g., the residue theorem) and linear algebra, and have read
Section 1.2.

2.1 Examples of Modular Forms of Level 1

In this section you will finally see some examples of modular forms of level 1!
We will first introduce the Eisenstein series, one of each weight, then define ∆,
which is a cusp form of weight 12. In Section 2.2 we will prove the structure
theorem, which says that using addition and multiplication of these forms, we
can generate all modular forms of level 1.

For an even integer k ≥ 4, the non-normalized weight k Eisenstein series as
a function on h∗ is

Gk(z) =
∗

∑

m,n∈Z

1

(mz + n)k
,

where for a given z, the sum is over all m,n ∈ Z such that mz + n 6= 0 (in
particular, we omit nothing in the sum if z ∈ h).

Proposition 2.1.1. The function Gk(z) is a modular form of weight k, i.e.,

Gk ∈ Mk(SL2(Z)).

Proof. See [Ser73, § VII.2.3] for a proof that Gk(z) defines a holomorphic
function on h∗. To see that Gk is modular, observe that

Gk(z + 1) =

∗
∑ 1

(m(z + 1) + n)k
=

∗
∑ 1

(mz + (n + m))k
=

∗
∑ 1

(mz + n)k
,

where for the last equality we use that the map (m,n+m) 7→ (m,n) is invertible
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over Z. Also,

Gk(−1/z) =
∗

∑ 1

(−m/z + n)k

=

∗
∑ zk

(−m + nz)k

= zk

∗
∑ 1

(mz + n)k
= zkGk(z),

where we use that (n,−m) 7→ (m,n) is invertible over Z.

Proposition 2.1.2. Gk(∞) = 2ζ(k), where ζ is the Riemann zeta function.

Proof. In the limit as z → i∞ in the definition of Gk(z), the terms involving z
all go to 0 as z 7→ i∞. Thus

Gk(i∞) =

∗
∑

n∈Z

1

nk
.

This sum is twice ζ(k) =
∑

n≥1

1

nk , as claimed.

For example,

G4(∞) = 2ζ(4) =
1

32 · 5
π4

and

G6(∞) = 2ζ(6) =
2

33 · 5 · 7
π6.

2.1.1 The Cusp Form ∆

Suppose E = C/Λ is an elliptic curve over C, viewed as a quotient of C by a
lattice Λ = Zω1 + Zω2, with ω1/ω2 ∈ h. The Weierstrass ℘-function of the
lattice Λ is

℘ = ℘Λ(u) =
1

u2
+

∑

k=4,6,8,...,∞

(k − 1)Gk(ω1/ω2)u
k−2.

It satisfies the differential equation

(℘′)2 = 4℘3 − 60G4(ω1/ω2)℘ − 140G6(ω1/ω2).

If we set x = ℘ and y = ℘′ the above is an (affine) equation for an elliptic curve
that is complex analytically isomorphic to C/Λ. [[Todo: See, e.g., Ahlfor’s
book.]]

The discriminant of the cubic 4x3−60G4(ω1/ω2)x−140G6(ω1/ω2) is 16∆(ω1/ω2),
where

∆ = (60G4)
3 − 27(140G6)

2.
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Since ∆ is the difference of 2 modular forms of weight 12 it has weight 12.
Morever,

∆(∞) = (60G4(∞))
3
− 27 (140G6(∞))

2

=

(

60

32 · 5
π4

)3

− 27

(

140 · 2

33 · 5 · 7
π6

)2

= 0,

so ∆ is a cusp form of weight 12.

Lemma 2.1.3. The only zero of the function ∆ is at ∞.

Proof. Let ω1, ω2 be as above. Since E is an elliptic curve, ∆(ω1/ω2) 6= 0.

2.1.2 Fourier Expansions of Eisenstein Series

Recall from (1.2.4) that elements f of Mk(SL2(Z)) can be expressed as formal
power series in terms of q(z) = e2πiz, and that this expansion is called the
Fourier expansion of f . The following proposition gives the Fourier expansion
of the Eisenstein series Gk(z).

Definition 2.1.4 (Sigma). For any integer t ≥ 0 and any positive integer n, let

σt(n) =
∑

1≤d|n

dt

be the sum of the tth powers of the positive divisors of n. Also, let σ(n) =
σ0(n), which is the number of divisors of n. For example, if p is prime then
σt(p) = 1 + pt.

Proposition 2.1.5. For every even integer k ≥ 4, we have

Gk(z) = 2ζ(k) + 2 ·
(2πi)k

(k − 1)!
·

∞
∑

n=1

σk−1(n)qn.

Proof. See [Ser73, §VII.4], which uses a series of clever manipulations of series,
starting with the identity

π cot(πz) =
1

z
+

∞
∑

m=1

(

1

z + m
+

1

z − m

)

.

From a computational point of view, the q-expansion for Gk from Proposition 2.1.5
is unsatisfactory, because it involves transcendental numbers. For computational
purposes, we introduce the Bernoulli numbers Bn for n ≥ 0 defined by the
following equality of formal power series:

x

ex − 1
=

∞
∑

n=0

Bn

xn

n!
. (2.1.1)
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Expanding the power series on the left we have

x

ex − 1
= 1 −

x

2
+

x2

12
−

x4

720
+

x6

30240
−

x8

1209600
+ · · ·

As this expansion suggests, the Bernoulli numbers Bn with n > 1 odd are 0 (see
Exercise 1.6). Expanding the series further, we obtain the following table:

B0 = 1, B1 = −
1

2
, B2 =

1

6
, B4 = −

1

30
, B6 =

1

42
, B8 = −

1

30
,

B10 =
5

66
, B12 = −

691

2730
, B14 =

7

6
, B16 = −

3617

510
, B18 =

43867

798
,

B20 = −
174611

330
, B22 =

854513

138
, B24 = −

236364091

2730
, B26 =

8553103

6
.

See Section 2.7 for a discussion of fast (analytic) methods for computing
Bernoulli numbers. Use the bernoulli command to compute Bernoulli numbers
in SAGE.

sage: bernoulli(12)

-691/2730

sage: bernoulli(50)

495057205241079648212477525/66

sage: len(str(bernoulli(10000)))

27706

For us, the significance of the Bernoulli numbers is that they are rational
numbers and they are connected to values of ζ at positive even integers.

Proposition 2.1.6. If k ≥ 2 is an even integer, then

ζ(k) = −
(2πi)k

2 · k!
· Bk.

Proof. The proof in [Ser73, §VII.4] involves manipulating a power series expansion
for z cot(z).

Definition 2.1.7 (Normalized Eisenstein Series). The normalized Eisenstein

series of even weight k ≥ 4 is

Ek =
(k − 1)!

2 · (2πi)k
· Gk

Combining Propositions 2.1.5 and 2.1.6 we see that

Ek = −
Bk

2k
+ q +

∞
∑

n=2

σk−1(n)qn. (2.1.2)

It is thus now simple to explicitly write down Eisenstein series (see Exercise 2.1).


