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1 Abstract

This paper examines Fermat’s Last Theorem, xn +yn = zn, for n ≥ 3, when x, y

and z are Gausian primes, and n is an odd integer, and proves that FLT holds
in such cases.

2 Introduction

A Gaussian number is defined as a number that can be written as a + bi where
a, b ∈ �

, and also, i =
√
−1. A Gaussian integer is a Gaussian number where a

and b are rational integers. In any integer field a unit is an element of the field,
I, with the following property

|a| = |I · a|

where a is an arbitrary element in the field. In the rational number field, the
units are ±1. In the Gaussian field the units are ±1 and ±i. A Gaussian prime
is defined as a Gaussian integer that cannot be written as the product of two
non-units.

Every complex number has a conjugate. The conjugate of the Gaussian
number α = a+bi is α′ = a−bi. Notice that both α+α′ = 2a and α·α′ = a2+b2

are real. The norm of α, written as N(α) = α · α′. At this point we introduce
two lemmas concerning N(α) when α is a Gaussian prime.

Lemma 1 If ρ is a Gaussian prime, then ρ ·ρ′ = p where p is an integer prime.

Proof Suppose p is a composite integer. Then p = p1 · p2 where p1, p2 ∈
�
, p1, p2 6= 1. However, then ρ · ρ′ = p1 · p2. This means that one of the four

conditions must occur:
(1) p1|ρ
(2) p1|ρ′
(3) p2|ρ
(4) p2|ρ′
However, this is impossible as both ρ and ρ′ are prime, and are therefore

cannot be divisible by either p1 or p2 as p1, p2 6= 1. ¤
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Lemma 2 If ρ is a Gaussian prime then ρ · ρ′ ≡ 1(mod 4)

Proof Since ρ is a Gaussian prime, ρ can be written as ρ = a + bi, where
a, b ∈ �

. Also, notice that a and b must be of opposite parity, because if they
are of the same parity then

(1 + i)|a + bi

which cannot be the case since a + bi = ρ which is prime. Therefore

ρ · ρ′ = (a + bi)(a − bi) = a2 + b2.

However, if t is even then t2 ≡ 0(mod 4), if t is odd, t2 ≡ 1(mod 4). Since a and
b are of opposite parity, a2 + b2 ≡ 1 (mod 4). ¤

Now we are able to prove the main theorem.

3 Fermat’s Last Theorem for Gaussian Primes

Theorem 1 The equation

αn + βn = σn(3.1)

has no solutions when α, β, σ are Gaussian primes and n is odd.

Proof We begin by multiplying each side of (??.1) by its conjugate

[αn +βn][(α′)n +(β′)n] = αn(α′)n +βn(β′)n +αn(β′)n +βn(α′)n = [σn][(σ′)n].

By lemma 3, α · α′, β · β′, σ · σ′ are all equal to integer primes. Let

α · α′ = a, β · β′ = b, σ · σ′ = c

where a, b and c are integer primes. Also, α·β′ and α′ ·β are complex conjugates.
Therefore (α ·β′)n and (α′ ·β)n are also conjugates, which means that (α ·β′)n +
(α′ · β)n = 2r where r some integer (more specifically, the real part of both
(α · β′)n and (α′ · β)n). Substitution in (3.2) yields

an + bn + 2r = cn.

This means that one of a, b and c must be even. However, all are prime, which
means that exactly one of a, b and c must equal 2. Assume without loss of
generality that c = 2. Observe that since c = σ ·σ′, and 2 = (1+ i)(1− i), either
σ = 1 + i, σ′ = 1 − i or visa versa. Substitution in (3.1) yields

αn + (1 ± i)n = βn.

In this equation we can assume without loss of generality that |α| < |β|, because
if |α| > |β|, then the equation can be rewritten as follows

αn = βn − (1 ± i)n.
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Also, since n is odd, (−1)n = −1, which means that

αn = βn + (−1)n(1 ± i)n = βn + (−1 ∓ i)n.

Therefore, any such equation where the isolated prime (i.e. the prime that is
alone on its side of the equation) has greater magnitude than the nonisolated
prime (i.e. the prime that is on the same side of the equation as (1±i)n), can be
transposed so that in the new equation, the isolated prime has less magnitude
than the nonisolated prime. Therefore, we may assume without loss of generality
that α is the nonisolated prime and that |α| < |β|.

Continuing, we recall that (3.1) yields

αn + (1 ± i)n = βn.

Multiplication of each side by its conjugate yields

an + 2n + [(1 + i)n · (α′)n + (1 − i)n · αn] = bn.

Also, recall that we let n be odd. Therefore we can let n = 2N + 1 where N is
an arbitrary integer. Substitution yields

a2N+1 + 22N+1 + [(1 + i)2N+1 · (α′)2N+1 + (1 − i)2N+1 · (α)2N+1] = b2N+1.

Now examining the term [(1 + i)2N+1 · (α′)2N+1 + (1 − i)2N+1 · (α)2N+1] more
closely, we notice that

(1 + i)2N+1(α′)2N+1 + (1 − i)2N+1(α)2N+1

= (1 + i)(1 + i)2N (α′)2N+1 + (1 − i)(1 − i)2N (α)2N+1

= (1 + i)(2i)N (α′)2N+1 + (1 − i)(−2i)N (α)2N+1

= (1 + i) · 2N · iN · (α′)2N+1 + (1 − i) · 2N · (−i)N · (α)2N+1

= 2N [(1 + i) · iN · (α′)2N+1 + (1 − i) · (−i)N · (α)2N+1]

Substitution yields

a2N+1 + 22N+1 + 2N [(1 + i) · iN · (α′)2N+1 + (1 − i) · (−1)N · (α)2N+1] = b2N+1

Transposition yields

22N+1 + 2N [(1 + i) · iN · (α′)2N+1 + (1 − i) · (−i)N · (α)2N+1] = b2N+1 − a2N+1

2N [2N+1+(1+i)·iN ·(α′)2N+1+(1−i)·(−i)N ·(α)2N+1] = (b−a)(b2N+b2N−1a+· · ·+a2N ).

Notice that (b2N + · · · + a2N ) is an odd integer as, since both a and b are odd,
which means that each term is an odd integer. Moreover, there are 2N + 1, an
odd number, of terms. Therefore (b2N + · · ·+ a2N ) is a polynomial with an odd
number of odd terms, making it an odd number. Therefore, 2 does not divide
(b2N + · · · + a2N ). However, by the previous equation,

2N |(b − a)(b2N + · · · + a2N ).
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It follows that 2N |(b − a). Also, recall that |α| < |β|, which means that a < b.
Therefore, 2N ≤ (b − a). However, this implies that

(b2N + · · · + a2N ) ≤ 2N+1 + (1 + i) · iN · (α′)2N+1 + (1 − i) · (−i)N · (α)2N+1

The goal of the remainder of the proof is to find a quantity that the right side
of the previous inequality is less than, and to show that the left side must be
greater than it, thereby yielding a contradiction. Notice that

2N+1 + (1 + i) · iN · (α′)2N+1 + (1 − i) · (−1)N · (α)2N+1

≤ |2N+1 + (1 + i) · iN · (α′)2N+1 + (1 − i) · (−1)N · (α)2N+1|
≤ 2N+1 + |1 + i| · |iN | · |(α′)2N+1| + |1 − i| · |(−i)N | · |(α)2N+1|

= 2N+1 +
√

2 · |(α′)2N+1| +
√

2 · |(α)2N+1|

= 2N+1 + 2
√

2 · |α2N+1|

= 2N+1 + 2
√

2 ·
√

a2N+1

≤ 2N+1 + 2
√

2 ·
√

a2N+2

= 2N+1 + 2
√

2 · aN+1

Therefore,
b2N + · · · + a2N ≤ 2N+1 + 2

√
2 · aN+1.

Notice that as N increases, b2N+· · ·+a2N increases faster than 2N+1+2
√

2·aN+1

does, as the power of N in b2N + · · · + a2N is greater, and a > 1. Therefore, if
the above inequality holds when N = 1, which results from n = 3, the minimum
value of n, then the inequality will always hold.

b2 + ab + a2 ≤ 22 + 2
√

2 · a2 = 4 + 2
√

2 · a2

Recall a < b, which means that

b2 + ab +a2 < a2 + a2 + a2 = 3a2 ≤ 4 + 2
√

2 · a2

=⇒ 3a2 − 2
√

2 · a2 = a2(3 − 2
√

2) ≤ 4

=⇒ a2 ≤ 4

3 − 2
√

2
=

4√
9 −

√
8

= 4
√

9 + 4
√

8 ≤ 4 · 3 + 4 · 3 = 24 < 25

=⇒ a < 5.

However, this is impossible as by lemmas 3 and 4, a must be an integer prime
congruent to 1 mod 4. The smallest such prime is 5. Therefore, a ≥ 5. A
contradiction has been reached. Therefore the equation αn + βn = σn has no
solutions when α, β, and σ are Gaussian primes and n is an integer greater than
or equal to 3. ¤

4


