
The Modular Group and Klein's Absolute Invariantby Luca CandeloriAbstractThe proof of Fermat's Last Theorem stronlgy relies on the connection between ellipticcurves and modular functions. In 1984, in fact, Professor Frey showed how a solution toFermat's equation would give rise to a semi-stable elliptic curve which would not be mod-ular, violating the Tanyiama-Shimura conjecture. The purpose of this paper is to explorebasic concepts about modular forms and to de�ne the modular function J(�), from whichany modular function can be derived.1 Mobius Transformations in Ĉ1.1 The Riemann SphereDe�nition 1. A "line" in C is the locus of points z satisfying the equation:jz��j= jz� � j (1)where z is a complex variable and �; � 2CGeometrically (Fig. 1) , we de�ne a line to be the set of points in the complex plane whichare equidistant from two �xed points �; �:

Fig. 1Each of the segments A;B; C;D has the same length of the segments A0; B 0; C 0; D 0 so that aunique line can be drawn that connects the points of intersection of all such segments.Dividing both sides of equation (1) by jz� � j we get:jz��jjz� � j =1Now, if we substitute the constant 1 with a parameter, call it �, which takes positive realvalues other than 1, our original line becomes a circle. In particular, the circle is de�ned as thelocus of points whose distances from two �xed points are in a constant ratio:
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Fig. 2We can then intepret lines not as a separate geometrical entity, but as a special family of cir-cles where �=1: Such a statement may sound strange to a reader familiar with euclidean geom-etry, but it can be given a geometrical interpretation by constructing a device that will unify theconcept of line and circle in one single geometrical object.De�nition 2. Consider C as embedded in R3, with z = x+ y i! (x; y; 0). Then, the RiemannSphere � is de�ned as: �:= f(x; y; u)2R3:x2+ y2+(u� 12)2= 14gGraphically, the Riemann Sphere is a sphere of diameter 1 touching the complex plane atexactly one point, the origin.

Fig. 3For any point z 2 C, we can draw a line from z to the north pole of the Riemann Sphere, andlabel z 0 the point of intersection between such line and the surface of the sphere. In this way, wecan establish a 1-1 correspondence between points of C and points on the surface of the sphereminus the north pole; the origin, in fact, is mapped to itself, since it is itself a point of intersec-tion between the Riemann Sphere and C. In order to avoid this, we map the north pole to thepoint at in�nity, so that, now, every point on the surface of the sphere is in bijection withfCgS f1g= Ĉ.Now, every circle drawn on the surface of the sphere will be mapped into a circle on theplane, and viceversa. However, if the circle drawn on the surface intersects the north pole, thenits projection on the plane will necessarily have an in�nite radius (i.e a line). Conversely, all thelines in the complex plane are mapped into circles passing through the north pole. We can thenconclude than the set of points z 2 Ĉ satisfying the equationjz��jjz� � j =�where � 2R+, will be mapped into circles on the surface of the Riemann Sphere. From now on,we will refere to these sets as ``circlines".1.2 Transformations in ĈConsider the following transformations:z! z ei� ; � 2R (couter-clockwise rotation through �)z!Rz; R> 0 (stretching by a factor of R)z! z+a; a2R (translation by a)



z! 1/z (inversion)All of these functions belong to a broader family of transformations called Mobius Transfor-mations:De�nition 3. A Mobius Transformation is a mapping of the form:z!w= f(z): = a z+ bc z+ d (a; b; c; d2C; a d� b c� 0)Such tranformations are well-de�ned over Ĉ by letting f(� d/c) =1 and f(1) = a/c, accordingto the geometric interpretation of the exented complex plane that we gave above. We avoid thecase where a d � b c = 0, since we would have f constant. In fact, if we denote f(z) and f(w) astwo transformations with same coe�cients a; b; c; d and a d� b c=0, then we would have:f(w)� f(z)= (a d� b c) (w� z)(cw+ d) (c z+ d) = 0The interesting property of Mobius Transformations is that they map circlines into circlines.We will now focus our attention on a particular subset of Mobius Transformations, the casewhen a; b; c; d are integer coe�cients and a d � b c = 1: Such set of transformations are knownas ``the Modular Group �" which plays a key-role in the proof of Fermat's Last Theorem.2 The Modular Group �The equation that appears in De�nition 3 is entirely determined by the coe�cients a; b; c; d.It is convenient, then, to associate a 2x2 matrix with entries a; b; c; d to each transformation.Call � the set of matrices so obtained. It can be shown that � forms a group under multiplica-tion.Theorem 4. � is a group under multiplicationProof. It su�ces to show that � satis�es each of the four group axioms.1. If A2�andB 2�, then AB 2�. This is true, since determinants are distributive�� A �� �� B ��= �� AB ��Also, since integers are closed under multiplication and addition, the entries of the matrixAB will be integers as well.2. Since matrix multiplication is associative, (AB ) C=A (BC), with A;B;C 2�3. The identity matrix I =� 1 00 1 � is a member of �4. For each A2�; there exists anA�12� such thatAA�1= I. By de�nition, given A= � a bc d �we have A�1= 1a d� b c� d � b� c a �Since A2�, detA�1=a d� b c=1, so that A�12�. �From now on, we will refer to � interchangeably as both the set of matrices with determi-nant 1 and integer coe�cients and the subset of mobius transformation associated with them. Itcan also be shown that � is generated by two matrices.Theorem 5. �is generated by the two matrices:T =� 1 10 1 � and S=� 0 � 11 0 �



where every A2�can be expressed in the formA=Tn1STn2S� STnkwhere ni are integers, and the representation is not unique.The proof, which we will not report here, procedes by induction on the element c and byusing the fact that a d� b c=1.Now, let H = fz 2 C: Im[z] > 0g (this set, for obvious geometrical reasons, is also called theupper-half plane) and de�ne a relation G as following:For every z; w2H, zvw i� 9 an A2�such that zA=wThe product z A can be interpreted as the action on z of the Mobius transformation deter-mined by the coe�cients of A. In other words, if we let A = � a bc d � and fA(z) = a z+ bc z+ d then z vw if and only if there exists an A 2 � such that fA(z) = w, for every z 2 H. Since we showedabove that � satis�es the group axioms under multiplication, it follows that the relation G is infact an equivalence relation.3 The Hyperbolic Upper-Half Plane H/�As any equivalence relation does, R creates partitions of H, so that H can be expressed as adisjoint union of equivalence classes. If we apply these partitions to H, the upper-half plane istransformed into a new geometrical object, which we will call H/�, the hyperbolic upper-halfplane. How does this new monster look like, and what are its properties? Let's take a look, forexample, to what happens to the circline L0 = fz 2H: Re[z] = 0g, the imaginary axis. By usingthe real parameter t > 0 we can parametrized the axis with L0= fz 2C: z = t i; t 2R>0g. Applythe transformation fA(z) to L0:fA(t i) = a t i + bc t i + d = a c t2+ b dc t2+ d2 + tc2 t2+ d2 iOn the right-hand side of the equation above we separated the real component from theimaginary component, so that we now have a clear picture of what the circline fA(t i) looks likefor a general matrix A 2 �. If we consider in fact fA(t i) as a function in R2, with parametriza-tion x(t) = Re[fA(t i)] and y(t) = Im[fA(t i)], t > 0, then fA(t i) would look like a semicircle cen-tered on the x -axis. Precisely, as t! 0 we have:limt!0Re[fA(t i)] = bdlimt!0 Im[fA(t i)] = 0And if we let t!1, we get: limt!1Re[fA(t i)] = alimt!1 Im[fA(t i)] = 0So that the coordinates of the center of the semicircle given by fA(t i) will be (a d+ b2 ; 0).Moreover, the radius will be given by the maximum value of the function y(t)= Im[fA(t i)]:y 0(t)= c2 t2+ d2� 2 c2 t2(c2 t2+ d2)2



Equating y 0(t)= 0 we get:c2 t2= d2) t= dc ) yMax= y(dc )= 12 c dNotice how, whenever c or d are 0, the radius of the semicircle can be considered in�nite, andthe imaginary axis either translates ( in case c = 0) or is inverted on itself ( case when d = 0).Also, when the identity matrix is applied to the imaginary axis, as expected, nothing changes.In a more general setting, every vertical line in the complex plane is transformed by anymatrix A 2C into either a semicircle with center on the real axis or translated to the left or tothe right.Choose now a point z in H. The set of all points w = fA(z) for A 2 �, is called an orbit . Inother words, an orbit is the equivalence class of points z 2C de�ned by the relation R de�ned inthe last paragraph of Section 2. In the picture below, that shows the action of � on the complexplane, the black spots mark an orbit in H/�:

Figure 1.Keeping in mind the de�nition of the equivalence relation R, we will now proceed inexploring some properties of H/�:De�nition 6. A fundamental region of a subgroup G 2 � is an open set RG � H with the twofollowing properties:a) No two distict points of RG are equivalent under Gb) If z 2H there exists a w2RG (the closure of RG) such that w is equivalent to z under GIn other words, a fundamental region is a portion of the plane that can be taken as represen-tative of the entire plane, since it contains exaclty one member of each of the equivalence classesthat form a partition of the plane itself. In the case of a lattice Z� Z on C, with double period!1; !2 , where the ratio !1/!2 is non-real, a fundamental region would be the parallelogrambounded by 0; !1; !2; !1 + !2. In the case of H/�, the fundamental region can be characterizedas follows:Theorem 7. The open set R�= fz 2H: jz j> 1; jz+ z�j< 1gis a fundamental region for �.



Proof. It su�ces to show that R� satis�es the two properties listed in de�nition 6. Property b)follows from a series of lemma that we will not prove in here. We will show, however, that notwo distinct points of R� are equivalent under �. Let z; z 0 2 R� be two points equivalent under�. Then there exists an A 2 �; A = � a bc d � such that z 0 = A z. We will �rst show that Im[z 0] <Im[z]; if c� 0: Directly from the formula for Mobius transformations we have:Im[z 0] = Im[z]jc z+ dj2Since c� 0, z 2R� we have:jc z+ d2j=(c z+ d) (c z�+ d)= c2 z z�+ c d(z+ z�)+ d2>c2�jc dj+ d2+Now, if d=0 we have jc z+ d2j> 1. If d� 0:c2�jc dj+ d2=(jcj � jdj)2+ jc dj � jc dj � 1so that jc z+ dj2> 1 ) Im[z 0]< Im[z] whenever c� 0, for each z 2R�.Suppose now z and z 0 are equivalent points of R�under �. Thenz 0= a z+ bc z+ d and z= d z 0� b� c z+aso that, if c� 0;we have both Im[z 0]> Im[z] and Im[z]> Im[z 0]:Therefore; c=0 and a d=1, a= d=� 1; and: A=� a bc d �=� � 1 b0 � 1 �=T�bBut then b must be 0, since both z; z 0 2 R� (any translation with b �0wouldmap z 0 outside of the fundamental region)� z= z 0: �In �gure 1, we labeled the fundamental region as I . It follows in fact from theorem 7 that iftwo points z; z 0 of the fundamental region are equivalent, then it must be that z 0 = I z = z. Inother words, the fundamental region is a part of the plane that contains a representativemember from each equivalence class. Any point in C is equivalent to some point in the funda-mental region, which is to say, for each z 2C, there exists a w 2R� such that z =Aw, for someA2�. The regions in �gure 1 are characterized by such A.We can now make some observations on the space H/�. First of all, not all the theorems ofeuclidean geometry hold on this space. This follows from the fact that Euclid's Fifth Postulate,which characterizes euiclidean geometry, does not hold on H/�. In �gure 2, we show how twolines parallel to line a pass through the same point P, which is not on a.

Figure 2.



In fact, there could be in�nite lines passing through P and parallel to a. This is why we callH/� the hyperbolic upper-half plane, since the axioms of hyperbolic geometry hold on this sur-face.The pattern in �gure 1 is in fact characteristic of surfaces with hyperbolic geometries. ThePoincare' Disk, for example, de�ned as D= fx2R2: jxj< 1g with hyperbolic metric, displays thesame pattern of lines and semicircles that violates Euclid's �fth postulate. The drawing CircleLimit IV by Escher, shown below, is an artistic interpretation of Poincare's Disk:

It may be hard at �rst to notice the similarity with �gure 1, but imagine to take the realaxis and connect the points at +1 and �1. Then you would have a circle that contains theupper-half plane, and it becomes clear how the patterns in Circle Limit IV can be explainedthrough the symmetries of the Modular Group.4 Klein's Modular Function J(�)We will now focus our attention on a function, J(�), which is invariant under any transfor-mation in �, and which belongs to a larger class of functions called modular functions. Modularfunctions are intimately connected with elliptic functions, and the connection between this twodi�erent mathematical objects is at the very core of the proof of Fermat's Last Theorem.



We will begin our exploration of the J function by �rst de�ning a few basic terms:De�nition 8. A function f of a complex variable z is called ``periodic" with period ! iff(z+!)= f(z)whenever z and z+! are in the domain of f.Suppose we have two periods. !1; !2 on the complex plane C, where, in order to avoiddegenerate cases, the ratio !1/!2 is non-real. Then every linear combination ! = n !1 +m !2 isalso a period, and we can construct a grid on the complex plane where every corner of each par-allelogram is a linear combination of the two periods. Such ``grid`` is technically called a latticegenerated by !. Two pairs of periods (!1; !2) and (!10 ; !20) are called equivalent if they generatethe same lattice �. The following theorem establishes a condition for equivalence of periods:Theorem 9. Two pairs of periods (!1; !2) and (!10 ; !20) are equivalent if and only if there existsa matrix A2� such that ! 0=A!The results of theorem 9, as we will see shortly, play a fundamental role in the constructionof the J function. Let's now proceed in describing functions which are doubly periodic on thecomplex plane. Constant functions are a trivial example of those, but there are also nonconstantmeromorphic ( a function is meromorphic when its only singularities in the �nite plane arepoles) functions which are doubly periodic. These are called elliptic functions . As it turns out,elliptic functions are an incredible instrument for solving problems in number theory, in partic-ular, for proving Fermat's Last Theorem.How do these functions look like? We will show here a simpli�ed procedure on how to con-struct the Weierstrass equation, from which every elliptic function can be derived.Since ellptic functions are, by de�nition, holomorphic everywhere but at at poles, they canall be described by a Laurent series expansion. Since we also want the function to be doublyperiodic, we may think of the function:f(z)=X!2� 1(z�!)2If we assume for a moment that the series above converge absolutely, than we can see why itis periodic. In fact, f(z+!1)=X!2� 1(z+!1�!)2but (z + !1� !) is already a member of the lattice, so that the above series can be regardedas a rearrangement of the series de�ning f(z). Since we assumed that the series converges abso-lutely, than we conclude that f(z)= f(z+!1), and the same reasoning holds for !2.However, it turns out that the series:X!2� 1(z�!)n (2)does not converge absolutely for n = 2. In fact, it can be shown that it does converge, abso-lutely and uniformly, for all exponents n > 2. The proof, however, is omitted here. We then�nally obtain our elliptic function by raising the exponent to n=3:f(z)=X!2� 1(z�!)3 (3)the above function, in fact, is doubly periodic on the complex plane, and it exhibits 3rdorder poles at each !.



Is it possible to construct an elliptic function with order 2 poles? The answer is yes. Sincethe series in (3) is uniformly convergent, we can integrate it term by term to get:}(z)= 1z2 +X!� 0 � 1(z�!)2 � 1!2�( we omitted some techincal details about the integration process). This is called the Weier-strass } function. Its importance relies on the fact that any elliptic function can be expressed asa rational function of } and, conversely, any rational function of } is an elliptic function.Notice that } is an even function since:(� z�!)2=(z+!)2=(z� (�!))2but the expression � ! is equivalent to !, since they run through the same set of periods.Therefore, f(z)= f(� z).The function } satis�es also the di�erential equation:}0(z)2=4 }(z)3� 60G4 }(z)� 140G6 (4)where Gn indicates the Eisentstein series of order n, de�ned as:Gn=X!2� 1!nConventionally, we let g2 = 60 G4 and g3 = 140 G6 and we call g2 and g3 the invariants. Infact, it can be shown that any Eisenstein series is expressible as a polynomial in g2 and g3.Equation 4 now takes the form of:}0(z)2=4 }(z)3� g2 }(z)� g3 (5)The right-hand side of equation 5 is a third-degree polynomial in }(z), with three distinctsolutions }(!1/2); }(!2/2); }[(!1+ !2)/2], the haf-periods. Since the three roots are distinct, weconclude that the discriminant of the polynomial must be nonzero, which is to say:�= g23� 27 g32� 0Remember, however, that the discriminant, being entirely determined by the invariants g2;g3, which are functions of the periods !1; !2; is itself a function of !1; !2. In fact, since g2 andg3 are homogenous functions by de�nition, of order -4 and -6 respectively, then it follows that �is a homogeneous function of order -12. which is to say, for any �� 0, we have:�(�!1; � !2)=��12�(!1; !2)Now, set � = !1!2 and let �= 1!1 . Then it follows that �, thorugh a simple change of scale, is afunction of one complex variable � .�(1; � )=!112�(!1; !2) (6)We are now ready to de�ne Klein's Modular Function, J(� ); also known as Klein's AbsoluteInvariant, which is a combination of g2 and g3 such that J(� ) is homogeneous of degree 0:J(!1; !2)= g23(!1; !2)�(!1; !2)It follows then that J(� !1; � !2) = �0J(!1; !) = J(!1; !2) and, by the same substitutionused in 6, we have: J(1; � )= J(!1; !2)



So that J is, in fact, a function of the ratio � alone, and we write J(� ). The key property ofthe J function is that it is invariant under the action of �. Consider in fact the pair of periods!1; !2; and their images !10 ; !20 under an arbitrary transformation A=� a bc d �2�. Then we have:� 0= !20!10 = a!2+ b!1c !2+ d!1 = a � + bc � + dHowever, from theorem 9 we know that the pairs of periods !1; !2 and !10 ; !20 are equivalent (the originate the same lattice �), which implies J(!1; !2) =J(!10 ; !20). Moreover, we have:Im[� 0] = Im[� ]jc � + dj2so that, together with the above, we can show how J(�) is invariant under the action of �.


