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Introduction 
 
The deep connections that have been discovered between the concrete math-
ematical objects called elliptic curves and their highly esoteric cousins, the 
modular forms, have stimulated extraordinary and groundbreaking advances in 
such fields as Number Theory.  
 One such advance occurred in 1994 when Andrew Wiles, professor of 
mathematics at Princeton University in Princeton, NJ finally achieved what had 
until then eluded a veritable who’s who of mathematics for nearly 300 years: he 
proved Fermat’s Last Theorem. The collective genius of Euler, Germain, 
Legendre, Dirichlet, Lamé, Kummer, and countless others paled under the great 
complexity of the problem and while large improvements were manufactured, a 
general proof remained elusive.  
 Two discoveries were to provide giant leaps towards a general proof. These 
were the Taniyama-Shimura-Weil Conjecture and Gerhard Frey’s Epsilon Con-
jecture. To give a full and detailed description of each of these would be 
beyond the scope of this paper. However, briefly, the first of these conjectures 
hypothesizes that, in fact, elliptic curves and modular forms are different rep-
resentations of the same thing. The second conjecture states that any purported 
counterexample to Fermat’s Last Theorem for a prime exponent greater than or 
equal to 5, produces an elliptic curve that is not modular. 
 Since the truly key factor in such advances as the proof of Fermat’s Last 
Theorem can be traced down to this connection between elliptic curves and 
modular forms, this shall be the topic guiding this paper. It is a visual explor-
ation of the weight 2 modular form attached to the elliptic curve called X0(11), 
which is given by the equation 2 3 2 10 20y y x x x+ = − − − . 
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1 Background Definitions 
 
It is profitable to take a look at some of the background information that leads 
to the goal of this paper, which is to catch a glimpse of what the graph of the 
weight 2 modular form on X0(11) might look like. 
 Let us define terms before defining what we mean by modular form. 
 
Definition 1.1: The upper half plane is the set of all complex numbers with 
imaginary part greater than zero. That is, the upper half plane, denoted H, is 
 

{ } 0Im   >∈= zz   CH  
 
Definition 1.2: The modular group Γ is the set of all transformations in C of 
the following form (called linear fractional transformations): 
 

( )
dcz
bazz

+
+

=γ  where dcba ,,,  are integers and 1=−bcad  

 
 
Definition 1.3: The quotient of Γ by the subgroup generated by { }1,1 −+  is 
isomorphic to the group of 22×  matrices with entries in Z and determinant 1, 
denoted by SL2(Z): 
 

( )
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⎬
⎫

⎩
⎨
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⎡
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So, for simplicity, we can represent γ∈Γ by a matrix in SL2(Z) and define: 
 

dcz
bazz

dc
ba

+
+

=⋅⎥
⎦

⎤
⎢
⎣

⎡
 

 
Definition 1.4: The sequence of numbers, denoted an, of an elliptic curve E 
with conductor N, are determined by the number of solutions there are for E in 
Z/pZ, denoted by Np for prime integers p. They are governed by these rules: 
 
 (1) ap= p + 1 – Np for prime integers p that do not divide N  
 (2) 21 −− ⋅−⋅= rrr pppp

apaaa  for prime integers p that do not divide N 

 (3) mnnm aaa ⋅=  if gcd(n,m) = 1  

 (4) ( ) +∈∀±== Znaa n
n     ,1ss

 for s a prime divisor of N and 1=Na  
Since the conductor of X0(11) is 11, which is prime, we do not need to worry 
about primes p that do divide N. 
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2 The Modular Form on Elliptic Curves 
 
We can now go ahead and describe the modular form attached to an elliptic 
curve. 
 
Definition 2.1: The modular form associated to an elliptic curve with discri-
minant ∆, going from the upper half plane to the complex plane, denoted by 
fE : H→C , is defined by the following: 
 

( ) ∑
∞

=∆
=

=

1),gcd(
1

2

n
n

izn
nE eazf π  with an as defined in Definition 1.4 

 
For ease, we shall henceforth drop the E in the denotation of the modular func-
tion and simply write f. 
 
 
Definition 2.2: With particular pertinence to the elliptic curve E on which f is 
defined, given N, the conductor of E, we define Γ0 ⊂  Γ where, in matrix form: 
 

( ) ( )
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⎫

⎩
⎨
⎧

∈⎥
⎦

⎤
⎢
⎣

⎡
=Γ c

dc
ba

 divides N  SL  N 20 Z  

 
 
Proposition: It is a fact that f(z)dz  is invariant under the action of Γ0(N) and as 
a result the following holds for γ∈Γ0(N): 
 

( ) ( ) ( )zfdcz
dcz
bazfzf 2+=⎟
⎠
⎞

⎜
⎝
⎛

+
+

=γ  

 
 Proof: We have ( ) ( ) ( ) ( ) ( ) ( )

( ) dzfdfdzzf
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( ) ( ) ( )22
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+
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3 The Modular Domain and Fundamental Domain 
 
We now begin to visualize the domain of the modular form. It seems to be a 
daunting task to try to visualize how the modular function f transforms the 
entire upper half plane. However, the concept of the Fundamental Domain will 
prove to be of significant help. 
 We will not go into the details of the theory behind how we might deter-
mine the Modular Domain, denoted D, and hence the fundamental domain, 
denoted D  (see Goldman chapter 12.9, 13.1 and 13.2).  
 
 
Definition 3.1: Suffice it to say that z∈D provided that: 

 
  (1) 0Re2

1 ≤≤− z  and 1≥z ; or 

  (2) 2
1Re0 << z  and 1>z  

 
Thus, D looks like the following figure 1: 
 

 
 

Figure 1: The Modular Domain 
  
   
  
Definition 3.2: The Fundamental Domain for Γ is the closure of D, denoted by 
D , and is simply D with the boundaries included. 
 
 
 In order to make further discussion on the Fundamental Domain, we must 
introduce the two linear fractional transformations that generate Γ. 
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Proposition: The following two matrices S and T generate Γ: 
 

⎥
⎦

⎤
⎢
⎣

⎡ −
=

01
10

S  and therefore, zz 1S −= ; and ⎥
⎦

⎤
⎢
⎣

⎡
=

10
11

T  and so, 1T += zz   

 
 

 Now, a very important claim can be made, which will justify precisely why 
we name the fundamental domain thus.  
 
Theorem: For all z in H, there exists a γ in Γ such that γz D∈ . 
 
 Proof: Only the procedure for actually finding γ shall be shown here. In 
truth, one would need to show that this procedure actually terminates in finitely 
many steps (see Goldman chapter 13.5). 
 The procedure for finding the particular γ in Γ that will map z into some-
thing in the fundamental domain can be found in flow chart form in Goldman’s 
book “The Queen of Mathematics” and is reproduced here. First, we must label 
the complex number as z0 as this process may need to be iterated several times 
before producing a zi in the fundamental domain. In figure 2, S and T are the 
generators of Γ given previously. 
 
 
 
 
 
 
    No 

    Yes 
z0 →   
 
 

Figure 2: Using S and T to map z into D  
 
 
Clearly, after going through this flow chart however many times necessary, we 
will have: 

01
2211 TSTS zz nmnm

i =+  and therefore, 2211 TSTS nmnm=γ  
 
 
Therefore, in the next section, we shall examine the image of D  under certain 
combinations of S and T. 
 
 
 
 
 
 

Choose n so that 
–1/2 ≤ Re(Tnzi) ≤ 1/2 Is Tnzi in D ?

Let  zi+1 = STnzi 

Let zi+1 = Tnzi  
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4 S-T Transformations of the Fundamental Domain 
 
Given the definitions of S and T, it is clear to see that what S does to z is it inv-
erts it with respect to the unit circle and then reflects this inversion over the 
y-axis, and what T does is it translates z one unit to the right. Hence the 
following is a diagram which bounds certain areas corresponding to where a 
particular combination of S and T maps the fundamental domain. This diagram 
and its derivation and explanation can be found in Goldman chapter 13.5. 
 

 
 

Figure 3: Transformations of D  under S and T 
 
 
Therefore, it appears that if we were able to relate the values of f on D  to its 
values on the area marked S in figure 3, then, we can find the values of f on the 
fundamental domain by computing f in S.  
 Unfortunately, the only similar relationship available to us is that described 
in the proposition in Section 2 on page 3. This relationship only holds for Γ0 
and since the conductor of X0(11) is 11 and 11 does not divide 1, S∉Γ0(11).  
 Therefore, instead, we must examine the fundamental domain not of Γ, but 
of Γ0(11). 
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5 Generators and Fundamental Domain of Γ0(11) 
 
Since we do not have the wonderful relationship between f(γz) and f(z), which 
we showed in section 2, unless γ is in Γ0(N), we must work instead with the 
generators and fundamental domain of Γ0(N).  
 We shall use programs to give us the answers. As stated earlier, X0(11) has 
conductor N = 11. 
 In William Stein’s website is a PARI/MAGMA calculator, which we use to 
find the generators of Γ0(11). The URL for the calculator page is given here: 
http://modular.fas.harvard.edu/calc.  
 Thus, we have the generators of Γ0(11): 
 
 

⎥
⎦

⎤
⎢
⎣

⎡
=

10
11

T , ⎥
⎦

⎤
⎢
⎣

⎡
−
−

=
711
23

U , and ⎥
⎦

⎤
⎢
⎣

⎡
−
−

=
811
34

V  

 
 

 
 In order to visualize the image of the fundamental domain under these transforma-
tions, we use Helena Verrill’s website, which draws fundamental domains for several 
subgroups of Γ. The URL is http://hverrill.net/fundomain/index2.html. 
 Figure 4 shows a snapshot of the fundamental domain drawer as it has 
drawn the fundamental domain for Γ0(11). 
 

 

 
Figure 4: The Fundamental Domain of Γ0(11) 
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Notice that the fundamental domain for Γ0(11) is divided into 12 hyperbolic 
triangles. This arises from a result, which we shall not discuss in great detail 
here, but which we shall mention briefly now.  
 There is a theorem that states that if H is a subset of G, then G can be writ-
ten as the disjoint union of the left cosets of H by elements of a subset R of G. 
That is, if GR H, ⊆  then ∪

R

HG
∈

=
r

r . So, we have that ( )∪
'

0 N
Γ∈

Γ=Γ
γ

γ . 

 Then, another theorem says that if N is prime, then Γ'⊆ Γ will contain N + 1 
elements. Thus, the fundamental domain of Γ0(11) will contain twelve images 
of the fundamental domain of Γ each image being under one element of Γ. Rec-
all, however, that S and T, as we defined them earlier, generate Γ, and so we 
should be able to write each of these transformations in terms of S and T. The 
following diagram shows exactly what the twelve transformations are. 

 

 
Figure 5: The transformations comprising the fundamental domain of Γ0(N) 

 
Therefore, we can map all of H into the fundamental domain of Γ by first app-
lying a transformation in Γ0(11) and then applying one of these twelve trans-
formations in Γ. Thus, logically, using Γ0(11), we can map all of H into the im-
age of the fundamental domain of Γ under one of these twelve transformations, 
which includes the domain itself by the identity map, I. Thus, figure 5 is the 
fundamental domain of Γ0(11). 
 We now look at how U and V transform this fundamental domain. The 
colors in figure 6 correspond with those in figure 5. 
 
 

  
Figure 6: Transformation of the fundamental domain of Γ0(11) under U and V 
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 Since T is in Γ0(11), a large portion of the upper half plane is already 
covered by the fundamental domain and its image under iterations of T and T-1. 
In fact, the only area left is that underneath the fundamental domain. Thus, we 
must search for the right combinations of T, U, and V that map the fundamental 
domain in to the space directly underneath it.  
 This is not the simplest of tasks. The author was able to cover only two 
main portions of this area and chose instead to extend the fundamental domain 
and make it symmetric along the imaginary axis for simplicity. The following 
diagram shows the two portions under the fundamental domain for Γ0(11), 
which the author managed to fill in. Successive magnifications are on the right 
and the bottom right image indicates the positions of the images of the 
fundamental domain under U and V as shown in figure 6 on the previous page. 
The area under the fundamental domain and to the right is covered using the 
transformations U, V, UT, and VT. The area to the left is covered using the 
transformations (UT)-1 and (VT)-1.  
 
 
 

 

 
 

Figure 7: Two areas under the fundamental domain covered by some γ∈  Γ0(11) 
with successive magnifications on the right 
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6 Atkin-Lehner Involution 
 
It is a fact that as z approaches the real axis, that is as the imaginary part of z 
approaches 0, f converges more and more slowly. As it turns out, the graph of f 
seems to increase dramatically in complexity and curiosity as z approaches the 
real axis. This arises from the fact that smaller and smaller areas below the 
fundamental domain can be covered with various combinations of T, U, and V, 
the generators of Γ0(11), and there is a relationship between the value of f in 
these smaller and smaller areas to its value over the entire fundamental domain. 
Thus, f is fractal-like as z approaches the real axis.  
 Fortunately, there is a technique available for calculating f very close to the 
origin, which may be of significant help, called Atkin-Lehner Involution. 
 We will not detail how the Atkin-Lehner Involution method can be 
deduced, but will show how it works. Instead of using γ in Γ, we use the matrix: 
 

⎥
⎦

⎤
⎢
⎣

⎡ −
=

0N
10

g  where N is the conductor. If 0Im →z , then ∞→
−

=
Nz

gz 1ImIm .  

 
 
 
 Atkin-Lehner involution gives ( ) ( ) ( )Nzfzzf 12 NN −− ⋅⋅±= . Thus, we can find f(z) 
for z close to the real axis indirectly by finding f on a point far from the real axis where f 
will converge well.  
 In the following section we discuss PARI, which is the program we use to calculate f 
at certain points. Using a function in PARI, we can determine the sign in the above 
equation. 
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7 PARI gp 
 
We must now introduce the program PARI, which is the program we shall use 
to calculate the value of f at certain points. The following are the five built-in 
PARI functions that we will need to use: ellinit, ellan, ellrootno, 
sum, and exp. 
 
Elliptic curves can be defined by five variables a1, a2, a3, a4, a5 in PARI corres-
ponding to the equation 54

2
2

3
31

2 axaxaxyaxyay +++=++ . 
 
ellinit([a1,a2,a3,a4,a5]) enters the corresponding elliptic curve into 
PARI, which we will ordinarily store into the variable e. Thus, according to the 
equation of X0(11), we enter it as [0,-1,1,-10,-20]. 
 
ellan(e,n) lists the sequence described in Definition 1.4 for elliptic curve e 
from a1 to an. 

sum(n = 1,max n, function) will compute ( )nfn

n∑ =

max

1
 and exp(m) will 

raise Euler’s number e (not elliptic curve e) to the power of m. 
 
Finally, to determine the sign for the Atkin-Lehner involution, discussed in the 
previous section, we enter –ellrootno(e) with the negative sign. If this 
equals 1, then the involution sign is plus; if it is –1, then the sign is minus. 
 
Ordinarily, we use the functions ellglobalred and  ellchangecurve to 
transform the elliptic curve into minimal form. However, X0(11) is already in 
minimal form and thus we do not need to worry about this.  
  
The following image is a snapshot of the PARI gp screen with the commands in 
place. We enter X0(11) given by [0,-1,1,-10,-20]. We also show a value of f cal-
culated the normal way, which is negative of that found using involution. But, 
notice how many more terms are needed for f to converge well as opposed to 
f_atkin, which is what we have denoted Atkin-Lehner Involution.  
 
 

 
Figure 8: Snapshot of PARI gp screen 
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8 Bounding the Errors 
 
Since f is defined by an infinite sum (and not a simple one such as an arithmetic 
or geometric series) it is impossible for PARI to calculate it exactly. Thus, the 
values that we will get from PARI will be approximations. However, for the 
most part, these approximations will be extremely accurate for we will try to 
calculate f at points where convergence is exceptional. 
 Nevertheless, we must bound the error that is created by truncating the sum 
at the number of terms to which we take the sum in PARI. To do this, we use 
the fact that nan ≤  for all natural numbers n. 
 
Proposition: If we truncate f(z) to a sum from n = 1  to n = k , and we are given 
that 1<z , then the error term, denoted by δ, satisfies the following inequality: 

( ) ( )( )112
1

11 +−≤ −
+ pkp p

kδ  where qp =  and izeq π2= . 
 

 Proof: ∑∑∑ ∞

+==

∞

=
+=

111 kn
n

n
k

n
n

nn
n

n qaqaqa . The last term is the error. Thus, 

∑∑∑ ∞

+=

∞

+=

∞

+=
⋅≤⋅≤=

111 kn

n

kn

n
nkn

n
n qnqaqaδ . Letting qp = , we have that  

 

( ) ( ) ( )
( ) ( ) ( )
( ) ( )( )
( ) ( )21
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1

11

22121

222121

321
1

111
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321

p
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p
k

kk

kkk

kkk
kn

n

pkp

pppppppkp
ppppppppkp

pkpkpkqn

−
+

−
+

++

+++

+++∞

+=

+=

++++++++++=

+++++++++++=

++++++=⋅∑

………
………

…

 

( ) ( )( )112
1

11 +−= −
+ pkp p

k   ■ 
 
We note that since we must have 1<z , this bound is not very useful for calcu-
lating f the regular way since as we can see, the smaller p is (and therefore, the 
closer z is to the real axis), the larger k must be in order to keep δ small.
 Clearly, however, the important thing is not simply to keep the error small, 
but to keep it small relative to the actual value calculated (the truncated sum). 
We do not need to delve into the theory of this. Instead, in calculating some of 
the values of f, the author checked that the upper bound for the error, which is 
likely to be considerably larger than the actual error, was much smaller in 
comparison to the calculated values. 
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9 The Image of some Semicircles under f 
 
Using the method of Atkin-Lehner Involution, I calculated the values of f(z) for 
z lying on some semicircles in C. We do this since, if we use involution, then, 

( ) 2
2

22
2

22
zN

iy
yxN

iy

iyxN
i

Nz
i

eeeeq
ππ

ππ

==== ⎟
⎠
⎞⎜

⎝
⎛ ++

−−

  

Thus, q  depends on z , among other factors. 
 
First we show the graph of the semicircles, and then their image under f. The 
top right is the image of the semicircle of radius 1, then the middle left is 
radius 0.9, middle right is radius 0.8, bottom left is radius 0.7, and bottom right 
is radius 0.6. 
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Figure 9: Graphs of the semicircles and their images under f 
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10 Domain Coloring and Graphing the Argument 
 
Since we would have to make a four-dimensional graph in order to fully show 
how f transforms the upper-half plane, we instead have to use other techniques 
such as the one shown in the previous section, which is showing what happens 
to certain curves or lines. Another technique is to ignore one of the dimension 
altogether.  
 For this latter approach, it would be almost meaningless to totally ignore 
either the real coordinate or the imaginary coordinate. Instead, we transform 
the complex values of f into polar coordinates, that is we have the magnitude 
and the argument of the calculated values of f. Then, it might be fruitful to 
focus solely on the argument or the magnitude. These can be graphed separately 
thus making two 3D graphs. Or, we can use a technique that is often called 
Domain Coloring. In our case, we make a correspondence between an argument 
arg(z)∈[0, 2π) radians or arg(z)∈[0, 360) degrees and a color. Then, we color 
the point at which f is evaluated by the color corresponding to the argument of 
the value of f at that point.  
 To do this, the author calculated f for the points with real part from -0.50 to 
0.00 by intervals of 0.02 and imaginary part from 0.01 to 0.10 by intervals of 
0.01.  
 There is probably a better way to graph this, perhaps with a program such 
as Mathematica, Maple, or GNUplot. However, the author is unversed in these 
programs and thus instead used Microsoft Paint! While keeping the color para-
meter saturation constant at 240 and luminosity at 120, the parameter hue was 
varied from 0 to 239. Thus, we have the color corresponding to argument by the 
following equation (the ≈  symbol is used because the right hand side must be 
rounded to the nearest integer): 
 

))(arg(240)( 120
2

))(arg( zfzhue zf
ππ =⋅≈  in radians or 

))(arg(240)( 3
2

360
))(arg( zfzhue zf =⋅≈  in degrees. 

 
 
 Thus, the following image is the result of this technique done to the values 
of f at the particular points previously mentioned. Note that there are white 
spaces near the bottom. These correspond to the space that the author managed 
to cover using the transformations (UT)-1 and (VT)-1. We chose not to calculate 
the points there because we would later fill it in using the relationship: 
 

( ) )()( 2 zfdczzf +=γ  when 0Γ∈γ  
 
 However, unfortunately, due to the tediousness of the process of making 
this graph alone, the author is yet unable to produce a detailed picture for this 
space. The reader might notice that we chose to fill in some of the other spaces 
under the fundamental domain that we were unable to cover using a combi-
nation of T, U, and V. This was done simply out of curiosity and because we 
were not going to find f at those points any other way anyway. 
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Figure 10: An image by Domain Coloring of the Argument of the values of f 
 
 
 As a brief explanation of the picture above, roughly speaking, 0º begins at 
red, then, rotating anti-clockwise, the color turns orange, yellow, and yellow-
green at 90º. Then, the color turns green and turns into light blue at 180º. This 
color turns into the full blue that dominates the left side of the image above and 
then the transition from blue to purple occurs at 270º. Finally, this color 
gradually transforms back into red. 
 Fortunately, if we use Tn as our transformation, we have ( ) 22 ndcz =+  

and therefore, )()(T 2 zfnzf n = , which keeps the argument invariant. There-
fore, if we complete the image above up to 0.5, then f over the entire upper half 
plane would simply be the same image translated horizontally left and right 
repeatedly by 1.  
 It is interesting to note that, despite the low resolution, it still appears that 
the graph is continuous. This is a good sign because f is holomorphic, which 
means that it is differentiable at all points in the upper half plane and therefore, 
its graph must be continuous. Also, at the points near the real axis, the graph 
increases in complexity even at this low resolution. This is a good indicator of 
the fractal-like nature of the graph near the real axis. 
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11  Closing Statement 
 
As is ever clearer, there is much left to do in this topic. A complete picture 
over the whole fundamental domain for X0(11) is on the way, but in order for 
sufficiently detailed graphs to be made we must automate the process of 
evaluating f. However, as it is, it is likely that a beautiful and significantly 
detailed picture of f in the small areas under the fundamental domain that I 
have covered with some combinations of T, U, and V can be made. However, I, 
for one, will be looking to other programs better suited to these rigorous tasks 
than is Microsoft Paint. 
 It would also be very interesting to examine how the graphs of these mod-
ular forms vary as the elliptic curve to which they are attached are changed.  
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