
Parametrization and the equation a3+b3=c2by Iain Kaplan1 IntroductionThis paper will utilize the process of parametrization to �nd solutions for the Diophantineequation: a3+ b3= c2This Fermat-like equation is an interesting cross between Fermat's Last Theorem forexponent 3 (for which there are no non-trivial solutions) and Fermat's Last Theorem forexponent 2 (which has in�nitely many integer solutions). At �rst glance, it is hard to saywhether there exist in�nitely many integer solutions a; b; c or not. What are we to expect?1.1 The Fermat-Catalan ConjectureIt turns out that shortly after Andrew Wiles presented his proof for Fermat's Last Theorem,mathematicians Henri Darmon and Andrew Granville submitted a conjecture that generalizesFermat's Last Theorem as well as Diophantine equations like a3 + b3 = c2. The conjecture saysthe equation: ap+ bq= cri. has in�nitely many non-trivial integer solutions a; b; c if: 1p + 1q + 1r > 1ii. has �nitely many integer solutions a; b; c if: 1p + 1q + 1r =1iii. has �nitely many integer solutions a; b; c if: 1p + 1q + 1r < 1Fermat's Last Theorem satis�es these conditions since there are in�nitely many Pythagoreantriples (the n=2 case), yet there exist no solutions for any n> 2.Note that the second case is only satis�ed by (p; q; r) = (2; 4; 4); (2; 3; 6); (3; 3; 3) The (3,3,3)case was shown by Euler's proof to have no solutions, and the (2,4,4) case was shown by Fermatto have no solutions. For the (2,3,6) case Darmon and Granville state that no non-trivial propersolutions exist.There exist a few solutions to the third case. For example, 1 + 23 = 32 and 25 + 72 = 34.Catalan's Conjecture states that 8 and 9 are the only consecutive non-trivial numbers which areboth integer powers of other numbers. This conjecture supports the conjecture that there existonly �nitely many solutions for the third case. Darmon and Granville propose that all suchsolutions have already been found.From the Fermat-Catalan Conjecture we can anticipate in�nitely many solutions for theequation a3+ b3= c2 since 13 + 13 + 12 > 1.1.2 ParametrizationOur goal is to �nd a way to produce in�nitely many solutions for a3+ b3= c2. The techniqueof parametrization is useful for this process.Suppose there is a curve on which we know one point. Is there any way to �nd anotherrational or real point of the curve? In some cases, it is possible to use parametrization toachieve the goal. This method involves taking a known point, and connecting it to anotherpoint on the curve by drawing a line. To �nd general solutions, one must express the variablessolely in terms of t, the slope of a line connecting the known point to a new point on the curve.Example 1. Let us examine the equation x2� y2=1 (E1)1



A known point on this curve is (x; y) = (1; 0). Then allow that the line with slope t connects(1; 0) with another (x; y) on the same curve. From the slope-intercept form of a line, we �ndthat y= t(x� 1) (E2)Substituting (E2) into (E1) we �nd that:x2� t2(x� 1)=1, which simpli�es tox2� t2x2+2t2x� t2� 1=0Next, we group the terms and divide through by the leading coe�cient.x2+ 2t21� t2x+ � t2� 11� t2 =0There are two roots to this equation. One is the point we have already found, and the otheris a new point determined by t. We factor to �nd this root.(x� 1)(x� t2+1t2� 1) =0So x= t2+1t2� 1 . Since y= t(x� 1), y= t( t2+1� t2+1t2� 1 )= 2tt2�1The parametrized solution for x2� y2=1 is (x; y)= ( t2+1t2-1 , 2tt2-1)We have reached the goal of �nding additional points on the curve, since substituting in anyvalue of t will give a new point (x; y)

Above is a graph of x2 � y2 = 1, with our known point, O = (1; 0). Drawn from O are lineswith various slopes which connect point O to another point on the curve x2 � y2= 1. From theparametrization (x; y) = ( t2+1t2-1 , 2tt2-1), we can predict and verify the point of intersection of eachline. We �nd that: Slope Point of Intersection Coordinatest ( t2+1t2-1 , 2tt2-1)110 A (� 10199 ; � 2099 )12 B (� 53 ; � 43 )
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� 12 C (� 53 ; 43)� 45 D (� 419 ; 409 )� 32 E (135 ; � 125 )Each of these points satis�es the equations x2� y2=1 and y= t(x� 1)Suppose we know another point on x2 � y2 = 1. We can �nd the slope t that will connectthis point to our known point (1; 0) by referring to our parametrized solution. We know thatx= t2+1t2� 1 and y= 2tt2� 1 . By substituting our new point, we can solve for t.For example, let's say the point we know to be on x2� y2=1 to be (3; 2 2p ).3(t2� 1)= t2+12 2p (t2� 1)=2tSo (3� 2 2p )(t� 1)(t+1)= t2� 2t+1= (t� 1)2(3� 2 2p )t+(3� 2 2p )= t� 1(1� 2p )t= 2p � 2t= 2p � 21� 2pUsing parametrization, we can take a quadratic curve on which we know one point andgeneralize all other points on the curve by drawing a line of slope t to another point on thecurve. Using the generalized solution for (x; y), other points on the curve can be found. Also,the slope of a line connecting a new point to our known point can be determined easily from theparametrization.2 Lemma for Parametrization on the equation a3+b3=c2Jim Buddenhagen presents a proof 1 showing that there exist many solutions to this equation fora and b both prime numbers. He proves the following lemma, which I will utilize to parametrizesolutions for a and bLemma 2. If gcd(a; b)= 1 and a3+ b3= c2, then eitherCase 1: a+ b and a2� ab+ b2 are both squares, orCase 2: a+ b and a2� ab+ b2 are both three times a square3 Case 13.3 Parametrization of the square factor a2�ab+ b2It would be nice if we were able to parametrize the equation from its form of a3+ b3= c2:Why are we not able to? The problem is that there are three unknowns, and this equationforms a surface rather than a curve. In order to parametrize this equation, we must �nd a wayto parametrize a quadratic curve.We know that a2�ab� b2 is a square. Let this number equal k2. Then:a2� ab+ b2= k2Dividing through by k2 yields:a2k2 � ak bk + b2k2 =This can be expressed as an equation with two unknowns by setting x= akand y= bkNow, x2 � xy + y2 = 1. Since we have two unknowns in a quadratic equation, we are nolonger dealing with a surface, but instead with a curve that we can parametrize with the sametechnique as the example.
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The point (� 1; 0) is a solution, so y= t(x+1)By substitution, x2� tx2� tx+ t2x2+2xt2+ t2� 1=0.Next, we see x2+ 2t2� tt2� t+1x+ t2� 1t2� t+1 =0So (x+1)(x+ t2� 1t2� t+1)= 0 and x= ak = 1� t2t2� t+1We also �nd y= bk = t( (1� t2)+ (t2� t+1)t2� t+1 )= 2t� t2t2� t+1Thus we determine that a=1� t2; b=2t� t2; k= t2� t+1Below is the graph of x2�xy+ y2=1:

Lines of various slopes intersect both our known point ( � 1; 0) and another point on thecurve x2� xy+ y2=1.Slope Point of Intersection Coordinatest ( 1� t2t2� t+1 ; 2t� t2t2� t+1)2p2 A ( 13� 2p ; 2 2p � 13� 2p )15 B (87 ; 37)� 13 C ( 813 ; � 713 )� 1 D (0;� 1)� 15 E (� 224241 ; � 255241 )Our parametrization has allowed us to �nd 5 additional points that satisfy x2� xy + y2= 1.Yet not all the points we may generate are useful. When t = � 1, our solution x= 0; y = � 1 isnot distinct from x = � 1; y = 0. The purpose of the parametrization is to aid in �nding otherinteger solutions for a; b; and c. Since x= ak and y = bk , and k is a factor of c, a rational solutionto our parametrization is acceptable. However notice that the solution for b and k when t= 2p2is irrational, which is not useful for �nding integer solutions of a; b; c: Thus, to ensure weintercept a rational point (x; y) (which means there are integer solutions for a and b), we mustpick a rational value of t. Let t= rs . Now
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a= s2� r2s2 b= 2rs� r2s2 k= r2� rs+ s2s2Since we want integer values for a; b; and k, we can multiply each value by s2, whichpreserves the equality between the three.Finally, a= s2� r2=(s� r)(s+ r) b=2rs� r2= r(2s� r) k= r2� rs+ s23.4 Are a; b; k coprime?First, we may assume that gcd(r; s)= 1. Since rs = t, if gcd(r; s)� 1 then rs can bereduced so that gcd(r; s)= 1.To show a; b; k are coprime, we assume there is a prime p which divides all three.If pja, then either pj(s� r) or pj(s+ r)3.4.1 p divides s� rIf pj(s� r) then r� s(mod p). Substituting this relation in b shows that b� s2(mod p)If p also divides b, then s2 and also s� 0(mod p). This would make r� 0(mod p), and since ithas already been stated that gcd(r; s)= 1, p must equal 1. Thus a; b; k are coprime3.4.2 p divides s+ rIf pj(s+ r), then s�� r(mod p). Substituting � r for s results in b�� 3r2(mod p) andk � 3r2(mod p). The largest value that would divide all three then is 3. Then k would be 3times a square, which is Case 2. If 3 divides k again, then k would not be 3 times a square.Since k � 3r2(mod p), however, r2 would have to be an odd power of 3, which is not possiblesince r is an integer. So a; b; k are coprime.3.5 A second parametrizationWe have produced parametrized solutions under the condition that a2� ab+ b2 is a square.However there is another constraint: a + b must also be a square. To further specify theparametrization we must now consider that a+ b= z2 for some z: If we replace a and b with theparametrization in terms of r and s, we have a similar equation.s2+2rs� 2r2= z2We set x= sz and y= rzx2+2xy� 2y2=1 (x; y)= (1; 0) is a solutiony= t(x� 1)By substitution, x2+2x(tx� t)� 2(tx� t)2� 1=0x2+ 4t2� 2t1+2t� 2t2x+ � 2t2� 11+2t� 2t2 =0Since x=1 is a root, (x� 1)(x� � 2t2� 11+ 2t� 2t2) =0 x= 2t2+12t2� 2t� 1y= t( 2t2+12t2� 2t� 1 � 1)= 2t2+2t2t2� 2t� 1So the parametrized solution for (x; y) is ( 2t2+12t2� 2t� 1 ; 2t2+2t2t2� 2t� 1)Below is the graph of x2+2xy� 2y2=1:
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Our known point is (1; 0). We �nd other parametrized solutions such as:Slope Point of Intersection Coordinatest ( 2t2+12t2� 2t� 1 ; 2t2+2t2t2� 2t� 1)10 A (201179 ; 220179)2 B (3; 4)1 C (� 3;� 4)15 D (� 811 ; � 413 )� 15 E (� 2713 ; 813)The generalized solutions are then:s=2t2+1 r=2t2+2t z=2t2� 2t� 1We want integer solutions for r and s, so we set t= mn and multiply by n2 to get integersSo s=2m2+n2 r=2m2+2mn z=2m2� 2mn�n23.6 a; b; c in terms of m and nNow, we can �nd complete parametrized solutions by substituting our solutions for s and r.a= s2� r2=n(n� 2m)(4m2+2mn+n2)b=2rs� s2=4m(m+n)(m�n)2c=kz=(4m4+4m3n+6m2n2� 2mn3+n4)(2m2� 2mn�n2)Picking values for m andn will give us a solution to a3+ b3= c24 Case 24.1 Parametrization when a2� ab+ b2 is three times a squareIn this case, we set a2� ab+ b2=3d2. Next we can say that x2� xy+ y2=3 by settingx= ad and y= bd . The point (� 1; 1) is a solution to this equation. So = t(x+1)+1:By substitution, we �nd:
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x2�x(t(x+1)+1)+ (t(x+1))2=3(t2� t+1)x2+(2t2+ t� 1)+ t2� 2=0(x+1)(x+ t2� 2t2� t+1)= 0: So x= 2� t2t2� t+1Now, we �nd that y= t( 2� t2t2� t+1 +1)+1= 2t+1t2� t+1The parametrized solution is then (x; y) = ( 2� t2t2� t+1 ; 2t+1t2� t+1)

Above is the graph of x2� xy+ y2=3 with lines of slope t from the point (� 1; 1)Slope Point of Intersection Coordinatest ( 2� t2t2� t+1 ; 2t+1t2� t+1)35 A (4119 ; 5519)15 B (73 ; 53)� 13 C (1713 ; 313)� 1 D (13 ; � 13 )� 15 E (� 223241 ; � 29241 )Parametrized solutions for a; b; and d area=2� t2 b=2t+1 d= t2� t+1To have integer values of a and b, we set t= rs , and multiply through by s2So a=2s2� r2 b=2rs+ s2 d= r2� rs+ s24.2 The second parametrizationWe know that a + b is also three times a square. We can set a + b = 3h2, or in terms of rand s, 3s2+2rs� r2=3h2: Setting x= sh and y= rh we see that3x2+2xy� y2=3 (� 1; 0) is a solutiony= t(x+1)By substitution, we �nd:3x2+2x2t+2xt� t2x2� 2t2x� t2� 3=0x2+( 2t� t23+2t� t2)x+ � t2� 33+ 2t� t2 =0
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(x+1)(x+ � t2� 33+ 2t� t2) =0 x= t2+33+2t� t2y= t( t2+33+2t� t2 +1)= 2t2+6t3+2t� t2The parametrized solutions is (x; y)= ( t2+33+2t� t2 ; 2t2+6t3+2t� t2)

Above is the graph of x2� xy+ y2=3 with lines of slope t from the point (� 1; 1)Slope Point of Intersection Coordinatest ( t2+33+ 2t� t2 ; 2t2+6t3+2t� t2)7 A (� 138 ; � 358 )1 B (1; 2)13 C (78 ; 58)� 12 D (137 ; 107 )� 32 E (� 73 ; 2)So s= t2+3 r=2t2+6t h=3+2t� t2To get integer values for s and r we set t= mn and multiply through by n2So s=m2+3n2 r=2m2+6mn h=3n2+2mn�m2We �nd that a and b, in terms of m and n, area=2s2� r2=� 2m4� 24m3n� 24m2n2+18n4b=2rs+ s2=(m2+3n2)(5m2+12mn+3n2)c=dh=3(3n2+2mn�m2)(m4+6m3n+12m2n2� 6mn3+3n4)5 ConclusionWe now have parametrized solutions for both cases. All we need to do is pick any value form and n and we can produce a solution to a3 + b3 = c2. This helps illustrate that there existin�nitely many solutions for this equation.
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