# On Fermat's Last Theorem 

by Hagop Taminian

Harvard University
"And perhaps, posterity will thank me for having shown it that the ancients did not know everything." - Pierre de Fermat (1601-1665)

## Introduction

$$
x^{n}+y^{n} \neq z^{n} \text { for an integer } n>2 \text { with } x, y, z \neq 0
$$

In this paper, I present a proof of Fermat's Last Theorem for $n=3, n=4$ and a special case of the theorem when $\mathrm{x}=\mathrm{y}$ for general n . I also provide proofs for the irrationality of $e$ and $\pi$.

## Section 1

In this section, I present Fermat's proof of the case $n=4$ using his infinite descent argument.

Lemma 1. If $x^{4}+y^{4}=z^{2}$ has integer solutions where $x, y, z \in \mathbb{Z}^{+}$, then there exists $a, b, c \in \mathbb{Z}^{+}$ such that $a^{4}+b^{4}=c^{2}$ with $c<z$.

Definition 2. A fundamental Pythagorean triple is a triple ( $x, y, z$ ) with $x, y, z \in \mathbb{Z}$ if $x^{2}+y^{2}=z^{2}$ and $x, y$, and $z$ are coprime.
We rewrite $x^{4}+y^{4}=z^{2}$ as
$\left(x^{2}\right)^{2}+\left(y^{2}\right)^{2}=z^{2}$

Assume that $x, y, z$ are coprime. Since all numbers are either even or odd, $x \equiv 0(\bmod 2)$ or $x \equiv$ $1(\bmod 2)$. Therefore, $x^{2} \equiv 0(\bmod 4)$ or $x^{2} \equiv 1(\bmod 4)$. This means that no square can be equivalent to $2(\bmod 4)$ or $3(\bmod 4)$. Therefore, $x$ and $y$ cannot both be odd, since $\left(x^{4}+y^{4}\right) \equiv 2(\bmod 4)$, which isn't a square. Obviously, $x$ and $y$ cannot both be even, since that would imply that $z$ is even, which would mean that $x, y, z$ have at least one common factor - a contradiction to the assumption that $x, y, z$ are coprime. Therefore, one of $x$ and $y$ must be even and the other odd.
Without loss of generality, let $x$ be even and $y$ be odd. Then, for $m, n \in \mathbb{Z}^{+}$, such that $m$, $n$ are coprime, we can write:
$x=2 \mathrm{mn}$
$y=m^{2}-n^{2}$
$z=m^{2}+n^{2}$
(Note: this parameterization is well-known, and seeing why it is true is simple. Consider the equation
$\alpha^{2}+\beta^{2}=\gamma^{2}$, with $\alpha, \beta, \gamma$ coprime and such that $\alpha$ is even.
It follows from above that $\beta$ and $\gamma$ are odd. We can rewrite this as:
$\alpha^{2}=\gamma^{2}-\beta^{2}=(\gamma-\beta)(\gamma+\beta)$
Consider an odd prime $p$ such that $p$ is a factor of $(\gamma-\beta)$ but not a repeated factor. Then, $p \mid \alpha^{2}$ and hence $p \mid \alpha$. Hence, $p$ is a repeated factor of $\alpha^{2}$, which means that it is a repeated factor of $(\gamma-\beta)(\gamma+\beta)$. Therefore, $p$ must also divide $(\gamma+\beta)$. This means that $p$ divides all of $\alpha,(\gamma-\beta),(\gamma+\beta)$, and hence, must divide $\alpha, 2 \gamma, 2 \beta$. But since $p$ is an odd prime, then $p$ also divides $\alpha, \beta$ and $\gamma$, and there is a contradiction since it was assumed that $a, \beta, \gamma$ are coprime.

Hence, every factor of $(\gamma-\beta)$ and $(\gamma+\beta)$ other than 2 must be repeated. Note that each of $\alpha$, $(\gamma-\beta)$ and $(\gamma+\beta)$ are even. Obviously, $\alpha^{2}$ must have an even number of factors of 2 . If $(\gamma-$ $\beta$ ) and $(\gamma+\beta)$ also had an even number of factors of 2 , then it would follow that $\alpha, \beta$ and $\gamma$ have a common factor - a contradiction. Hence, we can write
$\gamma-\beta=2 v^{2}$ and
$\gamma+\beta=2 \sigma^{2}$ for some $v, \sigma \in \mathbb{Z}$.
Adding these two equations gives $\gamma=v^{2}+\sigma^{2}$, and subtracting would give $\beta=\sigma^{2}-v^{2}$. It would follow by substituting for $\beta$ and $\gamma$ that $\alpha=2 v \sigma$.)

Going back to equation (1), we see that $\left(x^{2}, y^{2}, z\right)$ is a Pythagorean triple. There are two cases to consider now: one with $x, y$ and $z$ having a common prime factor, and one with $x, y$ and $z$ having no common factor.

Consider the first case. In other words, let $p$ be a prime number such that $x, y$, and $z$ have a common factor $p$. Then, we can write that the following is also a valid solution for our equation:
$(x / p)^{4}+(y / p)^{4}=\left(z / p^{2}\right)^{2}$
(Note: this is true since the multiple of any pythagorean triple is also a pythogorean triple itself)
Hence, we have found a new Pythogrean triple $\left(x / p, y / p, z / p^{2}\right)$ such that $z / p^{2}<\mathrm{z}$.
Now, consider the case where $x, y, z$ are coprime. This means, by definition 2 , that if $x^{4}+y^{4}=$ $z^{2}$ has solutions, then $\left(x^{2}, y^{2}, z\right)$ is a fundamental Pythogrean triple. Recall that for $\mathrm{m}, \mathrm{n}$ coprime such that $m, n \in \mathbb{Z}^{+}$, without loss of generality,
$x^{2}=2 \mathrm{mn}$
$y^{2}=m^{2}-n^{2}$
$z=m^{2}+n^{2}$
Rewrite equation (3) as
$y^{2}+n^{2}=m^{2}$. Since $m$ and $n$ are coprime, then there must exist a fundamental Pythagorean triple ( $\mathrm{y}, \mathrm{n}, \mathrm{m}$ ) satisfying this equation. Since $y^{2}$ is odd, then y is odd, and $n^{2}$ must be even. If $n^{2}$ is even, then n is also even. Hence, once again, we can write for $r, s \in \mathbb{Z}^{+}$and $r, s$ coprime:
$n=2 \mathrm{rs}$
$b=r^{2}-s^{2}$
$m=r^{2}+s^{2}$
Note that if the product of two coprime positive integers is a perfect square, then each is a perfect square individually.

Consider $m \cdot n / 2$
$m \cdot n / 2=2 \mathrm{mn} \cdot 1 / 4=x^{2} / 4=(x / 2)^{2}$
Hence, the product of m and $\mathrm{n} / 2$ is a square, which means that m and $\mathrm{n} / 2$ are each a perfect square too.

In a similar way, $\mathrm{rs}=2 \mathrm{rs} / 2=\mathrm{n} / 2$, which we just showed is a perfect square
Finally, let
$r=a^{2}$
$s=b^{2}$
$m=c^{2}$

Then, from equation (7),
$c^{2}=a^{4}+b^{4}$
Obviously, $c<z$ since $z=m^{2}+n^{2}$ (from equation (4)), which means that $z=c^{4}+n^{2}$, which means that $c^{4}<z$, which implies that $c<z$.

Hence, the lemma is proved, which means that we can have an infinite sequence of decreasing integers, which is clearly impossible.

## Section 2

Euler was the first to make a substantial attempt to prove the case of Fermat's Last Theorem for $\mathrm{n}=3$. His proof, however, was incomplete, and his work lead to Kummer's theory of ideals. I will consider Euler's proof of the theorem for $\mathrm{n}=3$ in this section in reference to L.J. Mordell's paper "Three Lectures on Fermat's Last Theorem".
$x^{3}+y^{3}=z^{3}$, with $x, y, z \in \mathbb{Z}$ and $x, y, z$ coprime
Two of $x, y, z$ must be odd, since if all three are even there is a common factor between them. Since $x, y, z$ are all integers, they can take positive or negative values. Therefore, it is immaterial which two of $x, y, z$ are odd. So assume without loss of generality that $x, y$ are odd and $z$ is even.

Since $x, y$ are odd, then their difference and sums are even. This means we can write that
$x+y=2 p, p \in \mathbb{Z}$ and
$x-y=2 q, q \in \mathbb{Z}$.
Adding these two equations gives $x=p+q$ and $y=p-q$. Substituting these values in equation 8,
$(p+q)^{3}+(p-q)^{3}=z^{3}$
$\Rightarrow\left(p^{3}+3 p^{2} q+3 q^{2} p+q^{3}\right)+\left(p^{3}-3 p^{2} q+3 q^{2} p-q^{3}\right)=z^{3}$
$\Rightarrow 2 p^{3}+6 q^{2} p=z^{3}$
$\Rightarrow 2 p\left(p^{2}+3 q^{2}\right)=z^{3}$
Note that $p$ and $q$ are coprime. If $p$ and $q$ are both odd, then their difference is even and their sum is even, which means that $x$ and $y$ would be even - a contradiction since it is assumed that $x$ and $y$ are coprime. Also, $p$ cannot be odd and $q$ even. This can be seen by considering modulo arguments: first, note that any cube is equivalent to 0,1 , or $3(\bmod 4)$. If p is odd, then $p \equiv 1(\bmod 4)$ or $p \equiv 3(\bmod 4)$. This implies that $2 p \equiv 2(\bmod 4)$, and that $p^{2} \equiv 1(\bmod 4)$. If $q$ is even, then $q \equiv 0(\bmod 4)$ or $q \equiv 2(\bmod 4)$. This means that $q^{2} \equiv 0(\bmod 4)$, and oviously, that $3 q^{2} \equiv 0(\bmod 4)$. So, from equation $(9)$, this would imply that $z^{3} \equiv 2(\bmod 4)$, which is impossible. So $p$ cannot be odd and $q$ even. Finally, this means that $p$ is even and $q$ is odd. This means that $\left(p^{2}+3 q^{2}\right)$ is odd.
Now, since $p$ and $q$ are coprime, the terms $2 p$ and $\left(p^{2}+3 q^{2}\right)$ are either coprime or have a common factor of 3 . I shall only consider the first case, since both cases involve the same approach:

If $2 p$ and $p^{2}+3 q^{2}$ are coprime, then each must be a perfect cube in order for $z^{3}$ to be a perfect cube. Hence, we write
$p^{2}+3 q^{2}=m^{3}$
These values for $p, q$ and $m$ can be found by taking
$m=r^{2}+3 s^{2}$, with $r, s \in \mathbb{Z}$
and then
$p+q \sqrt{-3}=(r+s \sqrt{-3})^{3}$
Expanding,
$p+q \sqrt{-3}=r^{3}+3 r^{2} s \sqrt{-3}-9 s^{2} r-3 s^{3} \sqrt{-3}$
Equating real and imaginary parts,
$p=r^{3}-9 s^{2} r$, and
$q=3 r^{2} s-3 s^{3}=3 s\left(r^{2}-s^{2}\right)=3 s(r-s)(r+s)$.
(Note: finding solutions satisfying equations similar to equation (10) lead to the theory of ideals.)

In equation (13), $q$ is odd, which implies that $r$ is even and $s$ is odd. If $r$ and $s$ are coprime, not both odd, and $3 \nmid r$, then $p$ and $q$ are coprime and $3 \nmid p$. Since $2 p$ is a cube, then $2 r(r+3 s)(r-$ $3 s)$ is a perfect cube. Since $3 \nmid r$, then $2 r, r+3 s, r-3 s$ must be coprime. In order for both these conditions to hold, then $2 r, r+3 s, r-3 s$ are each a cube. Hence, we write
$r+3 s=a^{3}, r-3 s=b^{3}, 2 r=c^{3}$
Going back to equations (9), (12) and (13):
$z^{3}=2 p\left(p^{2}+3 q^{2}\right)$
$=2\left(r^{3}-9 s^{2} r\right)\left(\left(r^{3}-9 s^{2} r\right)^{2}+3\left(3 r^{2} s-3 s^{3}\right)^{2}\right)$
$=2 r\left(r^{2}-9 s^{2}\right)\left(r^{6}-18 s^{2} r^{4}+81 s^{4} r^{2}+3\left(9 r^{4} s^{2}-18 r^{2} s^{4}+9 s^{4}\right)\right.$
$=2 r(r-3 s)(r+3 s)\left(r^{6}+9 r^{4} s^{2}+27 r^{2} s^{4}+27 s^{4}\right)$
$=2 r(r-3 s)(r+3 s)\left(\left(r^{2}+3 s^{2}\right)\left(r^{4}+6 s^{2} r^{2}+9 s^{4}\right)\right.$
$=2 r(r-3 s)(r+3 s)\left(\left(r^{2}+3 s^{2}\right)\left(r^{2}+3 s^{2}\right)\left(r^{2}+3 s^{2}\right)\right)$
$=a^{3} \cdot b^{3} \cdot c^{3} \cdot\left(r^{2}+3 s^{2}\right)^{3}$
Taking the cubic root,
$z=a \cdot b \cdot c \cdot\left(r^{2}+3 s^{2}\right)$
From equations (14), we can get
$2 r=a^{3}+b^{3} \Rightarrow r=\left(a^{3}+b^{3}\right) / 2 \Rightarrow r^{2}=\left(a^{6}+2 a^{3} b^{3}+b^{6}\right) / 4$
$6 s=a^{3}-b^{3} \Rightarrow s=\left(a^{3}-b^{3}\right) / 6 \Rightarrow s^{2}=\left(a^{6}-2 a^{3} b^{3}+b^{6}\right) / 36$
Substituting in (15),
$z=a \cdot b \cdot c \cdot\left(\left(a^{6}+2 a^{3} b^{3}+b^{6}\right) / 4+\left(a^{6}-2 a^{3} b^{3}+b^{6}\right) / 12\right)$
$\Rightarrow z=(1 / 3) a \cdot b \cdot c \cdot\left(a^{6}+a^{3} b^{3}+b^{6}\right)$
Since $a, b \neq 1, z>c$. Now, using an infinite descent argument not unsimilar to that in the case for $n=4$, we can find an infinite sequence of continually decreasing integers, which is impossible.

## Section 3

In this section, I provide a proof for a special case of Fermat's Last Theorem where $x=y$. First, let us consider proving the irrationality of $\sqrt{2}$, since the proof that follows makes use of similar ideas:

Definition 3. An irrational number is a number that cannot be expressed as a fraction $p / q$, where $p, q \in \mathbb{Z}$ and $q \neq 0$.

Assume that $\sqrt{2}$ is rational. That is, assume that
$\sqrt{2}=p / q$, where $p, q \in \mathbb{Z}, q \neq 0$, and $p$ and $q$ are coprime.
Squaring, we get
$2=p^{2} / q^{2} \Rightarrow 2 q^{2}=p^{2}$
Observe that the L.H.S is even, which means that $p^{2}$ is even too. Since $p^{2}$ is even, it follows that $p$ is even. Hence, $p=2 a$, for some $a \in \mathbb{Z}$. Substituting,
$2 q^{2}=(2 a)^{2} \Rightarrow 2 q^{2}=4 a^{2} \Rightarrow q^{2}=2 a^{2}$
Observe that the R.H.S is even, which means that $q^{2}$ is even. Since $q^{2}$ is even, it follows that $q$ is even. Therefore, $p$ and $q$ must have at least one common factor, and there is a contradiction.

Going back to
$x^{n}+y^{n}=z^{n}, x, y, z \in \mathbb{Z}$, and $x, y, z$ coprime
We consider the case when $x=y$. We substitute in the above equation to get
$2 x^{n}=z^{n}$
This means that $z^{n}$ is even, which means that $z$ is even. Therefore, we can write
$z=2 m$ for some $m \in \mathbb{Z}$
Substituting in equation 16, we get
$2 x^{n}=(2 m)^{n}=2^{n} m^{n}$
$\Rightarrow x^{n}=2^{n-1} m^{n}$
This implies that $x^{n}$ is even, which means that $x$, too, is even. Since both $x$ and $z$ are even, then they must have at least one common factor, which contradicts the assumption that they are coprime.

## Section 4

In this section, I provide a simple proof for the irrationality of $e$.
Recall the Taylor series expansion for $e^{x}=1+x+x^{2} / 2!+x^{3} / 3!+\ldots+x^{n} / n!+x^{n+1} \cdot e^{k} /(n+1)!$ where $0<k<x$.

Theorem. The number $e$ is irrational.

Proof. Assume that $e$ is rational. That is, assume
$e=p / q$, for $p, q \in \mathbb{Z}, q \neq 0$
Consider the taylor series expansion for $x=1$ :
$e=p / q=1+1+1 / 2!+1 / 3!+\ldots+1 / n!+e^{k} /(n+1)!$, where $0<k<1$
Take $n \in \mathbb{Z}$ such that $n \geqslant q$ and multiply (17) by $n!$,
$n!e=n!p / q=n!+n!+n!/ 2!+n!/ 3!+\ldots+1+e^{k} /(n+1)$
Observe that in (18), $(n!+n!+n!/ 2!+n!/ 3!+\ldots+1)$ is an integer.
Consider the term $e^{k} /(n+1)$. Since $n \geqslant q$ and $q \neq 1$, then $n \geqslant 2$. Hence,
$0<e^{k} /(n+1)<e^{k} / e<1$ for $0<k<1$
$\Rightarrow 0<e^{k} /(n+1)<1$

Since every term on the R.H.S in equation 18 is an integer except $e^{k} /(n+1)$, then the R.H.S is definitely not an integer.
Consider the L.H.S,
$n!p / q=n(n-1)(n-2) \ldots \cdot p / q$
Since $n \geqslant q, q$ will cancel one of the $n(n-1)(n-2) \ldots$ terms, which means that the L.H.S is definitely an integer. Hence, there is a contradiction.

## Section 5

In this section I outline Niven's proof of the irrationality of $\pi$.
Theorem. The number $\pi$ is irrational.

Proof. Assume that $\pi$ is rational. That is, assume
$\pi=p / q$, where $p, q \in \mathbb{Z}^{+}$
Define two functions $f(x)$ and $F(x)$ by
$f(x)=x^{n}(p-q x)^{n} / n!$
$F(x)=f(x)-f^{(2)}(x)+f^{(4)}(x)-\ldots+(-1)^{n} f^{2 n}(x)$
Notice that when $x=0$ or $x=\pi, f(x)$ and its derivatives are integers. This implies that $F(0)$ and $F(\pi)$ are integers too. Consider now
$d / d x\left(F^{\prime}(x) \sin x-F(x) \cos x\right)=\left(F^{\prime \prime}(x)+F(x)\right) \sin x=f(x) \sin x$,
which implies
$\int_{0}^{\pi} f(x) \sin x \cdot d x=F(\pi)-F(0)$
is an integer. But, for $0<x<\pi$ and sufficiently large $n$, we have
$0<f(x) \sin x<\pi^{n} \cdot a^{n} / n!<1 / \pi$,
so that
$0<\int_{0}^{\pi} f(x) \sin x \cdot d x<1$
Which contradicts the equation (19) being an equation in integers.

