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“And perhaps, posterity will thank me for having shown it that the ancients did
not know everything.” - Pierre de Fermat (1601-1665)

Introduction
x™+ y™ # 2" for an integer n > 2 with z,y,2#0

In this paper, I present a proof of Fermat’s Last Theorem for n=3, n=4 and a special case of the
theorem when x=y for general n. I also provide proofs for the irrationality of e and =.

Section 1

In this section, I present Fermat’s proof of the case n=4 using his infinite descent argument.

Lemma 1. If z* + y* = 22 has integer solutions where x,y,z € Z1, then there exists a,b,c € 7T
such that a* + b* = c* with c < z.

Definition 2. A fundamental Pythagorean triple is a triple (1,y,2) with x,y,2 € 7 if 22 + y? = 2>

and x,y, and z are coprime.
We rewrite x* + y* = 2% as

(%)% + (y?)2 =22 (1)

Assume that x,y,z are coprime. Since all numbers are either even or odd, x = 0(mod 2) or z =
1(mod 2). Therefore, x> = 0(mod 4) or 22 = 1(mod 4). This means that no square can be equiva-
lent to 2(mod 4) or 3(mod4). Therefore, z and y cannot both be odd, since (z*+ y*)=2(mod4),
which isn’t a square. Obviously, = and y cannot both be even, since that would imply that z is
even, which would mean that x,y,z have at least one common factor - a contradiction to the
assumption that x,y,z are coprime. Therefore, one of x and y must be even and the other odd.

coprime, we can write:

T =2mn

y=m?—n?

z=m?+n?

(Note: this parameterization is well-known, and seeing why it is true is simple. Consider the
equation

a?+ B2 =2, witha, 8,y coprime and such that « is even.

It follows from above that 8 and v are odd. We can rewrite this as:
a’=7— 2= (y-B)(v+P)

Consider an odd prime p such that p is a factor of (7 — 8) but not a repeated factor. Then,
pla? and hence p|a. Hence, p is a repeated factor of a?, which means that it is a repeated
factor of (v — B)(7y + B). Therefore, p must also divide (y + ). This means that p divides all of
a, (v — 08), (v + B), and hence, must divide a, 27y, 2(3. But since p is an odd prime, then p also
divides a, 8 and +, and there is a contradiction since it was assumed that a, 3,y are coprime.



Hence, every factor of (7 — ) and (v + () other than 2 must be repeated. Note that each of «,
(v — B) and (v + B) are even. Obviously, a? must have an even number of factors of 2. If (y —
B) and (v + ) also had an even number of factors of 2, then it would follow that «, 8 and ~
have a common factor - a contradiction. Hence, we can write

v — B=2v% and

v+ B =202 for some v, € Z.

Adding these two equations gives v = v? + 02, and subtracting would give 8 = % — v2. Tt would
follow by substituting for 8 and ~ that a=2vo.)

Going back to equation (1), we see that (22, y?, 2) is a Pythagorean triple. There are two cases
to consider now: one with z, y and z having a common prime factor, and one with z,y and z
having no common factor.

Consider the first case. In other words, let p be a prime number such that z, y, and z have a
common factor p. Then, we can write that the following is also a valid solution for our equation:

(z/p)*+ (y/p)*' = (2/p*)?
(Note: this is true since the multiple of any pythagorean triple is also a pythogorean triple itself)
Hence, we have found a new Pythogrean triple (z/p,y/p,2/p?) such that z/p? < z.

Now, consider the case where z, y, z are coprime. This means, by definition 2, that if 2* 4+ y* =
22 has solutions, then (22,42, 2) is a fundamental Pythogrean triple. Recall that for m,n coprime

such that m,n € Z*, without loss of generality,

2% =2mn (2)
y?=m? —n? .(3)
z=m2+n? .(4)

Rewrite equation (3) as

y? + n? = m2 Since m and n are coprime, then there must exist a fundamental Pythagorean
triple (y,n,m) satisfying this equation. Since y? is odd, then y is odd, and n? must be even. If n?
is even, then n is also even. Hence, once again, we can write for r,s € Z* and r, s coprime:

n = 2rs ...(5)
b=r?—52 ...(6)
m=r2+ s> -(7)

Note that if the product of two coprime positive integers is a perfect square, then each is a per-
fect square individually.

Consider m -n/2
m-n/2=2mn-1/4=2%/4=(2/2)*

Hence, the product of m and n/2 is a square, which means that m and n/2 are each a perfect
square too.

In a similar way, rs = 2rs/2 = n/2, which we just showed is a perfect square

Finally, let

r=a?

s=0b>

m:(:2

N}



Then, from equation (7),
cA=a'+b!

Obviously, ¢ < z since z = m? + n? (from equation (4)), which means that z = ¢* + n2, which
means that ¢* < z, which implies that ¢ < z.

Hence, the lemma is proved, which means that we can have an infinite sequence of decreasing
integers, which is clearly impossible.

Section 2

Euler was the first to make a substantial attempt to prove the case of Fermat’s Last Theorem
for n=3. His proof, however, was incomplete, and his work lead to Kummer’s theory of ideals. 1
will consider Euler’s proof of the theorem for n=3 in this section in reference to L.J. Mordell’s
paper ‘‘Three Lectures on Fermat’s Last Theorem”.

23+ 42 =23 withz,y,2 € Zand z, y, z coprime ...(8)

Two of z, y, z must be odd, since if all three are even there is a common factor between them.
Since x, y, z are all integers, they can take positive or negative values. Therefore, it is immate-
rial which two of =, y, z are odd. So assume without loss of generality that x, y are odd and z is
even.

Since z, y are odd, then their difference and sums are even. This means we can write that
T+y=2p,p€e”Z and
T —y=2q,q€7%.

Adding these two equations gives £ = p + ¢ and y = p — ¢. Substituting these values in equation
8,

(P+ )P+ (p—q)P° =2

= (P*+3p*a+3¢’p+ ¢°) + (p° = 3p°q + 3¢°p - ¢°) = 2°
=2p° +6¢°p=2°

= 2p(p? +3¢*) =23 -(9)

Note that p and ¢ are coprime. If p and ¢ are both odd, then their difference is even and their
sum is even, which means that x and y would be even - a contradiction since it is assumed that
z and y are coprime. Also, p cannot be odd and ¢ even. This can be seen by considering
modulo arguments: first, note that any cube is equivalent to 0, 1, or 3 (mod 4). If p is odd, then
p=1(mod 4) or p=3(mod 4). This implies that 2p = 2(mod 4), and that p> = 1(mod 4). If q is
even, then ¢ = 0(mod 4) or ¢ = 2(mod 4). This means that ¢? = 0(mod 4), and oviously, that
3¢g2=0(mod 4). So, from equation (9), this would imply that z? =2(mod 4), which is impossible.
So p cannot be odd and ¢ even. Finally, this means that p is even and ¢ is odd. This means
that (p?+ 3¢?) is odd.

Now, since p and ¢ are coprime, the terms 2p and (p? + 3¢?) are either coprime or have a
common factor of 3. I shall only consider the first case, since both cases involve the same
approach:

If 2p and p? + 3¢> are coprime, then each must be a perfect cube in order for z° to be a perfect
cube. Hence, we write

p’+3¢>=m? ...(10)
These values for p, ¢ and m can be found by taking
m=r2+3s%, withr,s€Z ..(11)

and then



p+aqV=3=(r+sv/=3)°

Expanding,

p+gv/—3=r+3r%sv/—3 —9s*r —3s°v/—3
Equating real and imaginary parts,

p=r3—9s’r,and ..(12)

q=23r%s —3s3=3s(r? — s2)=3s(r — s)(r+s) ...(13)

(Note: finding solutions satisfying equations similar to equation (10) lead to the theory of
ideals.)

In equation (13), ¢ is odd, which implies that r is even and s is odd. If r and s are coprime, not
both odd, and 31 r, then p and ¢ are coprime and 31 p. Since 2p is a cube, then 2r(r 4+ 3s)(r —
3s) is a perfect cube. Since 31r, then 2r,r + 3s,r — 3s must be coprime. In order for both these
conditions to hold, then 2r,r + 3s,r — 3s are each a cube. Hence, we write

r+3s=a’ r—3s=b 2r=c3 ..(14)
Going back to equations (9), (12) and (13):
28 =2p(p” +3¢%)

=2(r — 95%r)((r® — 9s%r)2 4+ 3(3r%s — 35%)?)

2r(r? — 952)(r — 18s%r* + 8152 + 3(9rts? — 18r2st + 9s)

Il
B

r(r —3s)(r +3s)((r* + 3s%)(r* + 6sr> + 9s%)

(
(
(
(r?

(
2r(r — 3s)(r 4 3s)(r6 + 9rts? + 27r2s* + 275%)
(
(

r —3s) r+35)((r +3s%)(r* + 3s%)(r* + 35?))

3

2r

Taking the cubic root,

z=a-b-c (r*+3s?) ..(15)

From equations (14), we can get

2r=a®+ b =r=(a®+0%/2=r? = (a® + 2% + b%) /4
6s=a®—b*=s=(a®—b%) /6= s>=(a® —2a°b* + b%) /36
Substituting in (15),

z=a-b-c-((a®+2a363 + %) /4 + (a8 — 2a30® + 15) /12)
=2=(1/3)a-b-c- (a®+ a®b® + b°)

Since a,b# 1, z > ¢. Now, using an infinite descent argument not unsimilar to that in the case
for n =4, we can find an infinite sequence of continually decreasing integers, which is impossible.

Section 3

In this section, I provide a proof for a special case of Fermat’s Last Theorem where = = y. First,
let us consider proving the irrationality of v/2, since the proof that follows makes use of similar
ideas:

Definition 3. An irrational number is a number that cannot be expressed as a fraction p/q,
where p, q € Z and q #0.



Assume that \/2 is rational. That is, assume that
\/§:p/q, where p,q € Z, ¢#0, and p and q are coprime.
Squaring, we get

2=p*/¢*=2¢"=p’

Observe that the L.H.S is even, which means that p? is even too. Since p® is even, it follows that
p is even. Hence, p=2a,for some a € Z. Substituting,

2¢° = (2a)? = 2¢*> = 4a® = ¢* = 24>

Observe that the R.H.S is even, which means that q* is even. Since q* is even, it follows that g
is even. Therefore, p and q must have at least one common factor, and there is a contradiction.
O

Going back to

" +y"=2",2,y,2€ 7%, and z,y, z coprime

We consider the case when = =y. We substitute in the above equation to get
2e" = 2" ...(16)

This means that z™ is even, which means that z is even. Therefore, we can write
z=2m for some m € Z

Substituting in equation 16, we get

2z™ = (2m)™ =2"m"

=" =2""1m"

This implies that z™ is even, which means that z, too, is even. Since both x and z are even,
then they must have at least one common factor, which contradicts the assumption that they
are coprime. (I

Section 4
In this section, I provide a simple proof for the irrationality of e.

Recall the Taylor series expansion for e* =1+ x + 22/2! + 2%/3! + ... + 2" /n! + 2"+ - e*/(n + 1)!
where 0 <k <z.

Theorem. The number e is irrational.

Proof. Assume that e is rational. That is, assume

e=p/q,forp,q€Z,q#0

Consider the taylor series expansion for z = 1:
e=p/qg=1+1+1/2!41/3!+ ...+ 1/n!+e"/(n+1)!, where 0<k<1 ..(17)
Take n € Z such that n > ¢ and multiply (17) by n!,

nle=n!p/g=n!+n!+n!/2!+n!/3!+ . +1+e"/(n+1) ...(18)
Observe that in (18), (n!+n!+n!/21+n!/3!+...4+ 1) is an integer.

Consider the term ef/(n +1). Since n > ¢ and q# 1, then n > 2. Hence,
0<ef/(n+1)<ef/e<lfor 0<k<1

=0<e/(n+1)<1



Since every term on the R.H.S in equation 18 is an integer except e*/(n + 1), then the R.H.S is
definitely not an integer.

Consider the L.H.S,
nlp/g=n(n—-1)(n—2)...-p/q

Since n > ¢, ¢ will cancel one of the n(n — 1)(n — 2)... terms, which means that the L.H.S is defi-
nitely an integer. Hence, there is a contradiction. O

Section 5
In this section I outline Niven’s proof of the irrationality of .

Theorem. The number 7 is irrational.

Proof. Assume that 7 is rational. That is, assume
m=p/q, where p,q€Z*

Define two functions f(z) and F(z) by

f(x) =" (p— qz)/n!

F(a)= f(z) ~ fO@) + FO(&) — -+ (= )" f22(x)

Notice that when £ = 0 or x = 7, f(z) and its derivatives are integers. This implies that F'(0)
and F(7) are integers too. Consider now

d/dz(F’(z)sinz — F(z)cosz)=(F""(z) + F(z))sinz = f(x)sinx,
which implies

[ @) sine-da=F(x) - F(0) ...(19)

is an integer. But, for 0 < x <7 and sufficiently large n, we have
0< f(z)sinz <7"™-a”/n!<1/m,

so that

0< [ fa)sinz du<1

Which contradicts the equation (19) being an equation in integers. O



