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IntroductionLattices are, put simply, sets of points on a euclidean space arranged in a grid-like structure. Theirstudy has been of great importance to the study of elliptic curves, one of the major recent research inter-ests for number theorists. The study of lattices leads to the study of the functions de�ned over them.The object of this paper is to give a basic introduction to one of these functions, the Weierstrass }function, and exhibit some of its more basic characteristics at a less technical level than the one used bystandard texts on elliptic curves. It assumes little or no background in algebra and complex analysis andis aimed to the beginning mathematics student or the curious reader. To provide this introduction, wewill begin by setting the basic theorems of algebra needed to study lattices. Then we will deduce somevery interesting relations between lattices and n-dimensional toruses and we will conclude by introducingthe Weierstrass function and describing its basic properties.



Algebraic BackgroundTo understand the way lattices are structured, it is useful to apply some algebraic tools. Perhaps themost fundamental of all of them is the group, a set that works just like the real positive numbers in thesense that it has a form of multiplication operation, an identity and inverses. Formalized, this last state-ment reads:De�nition 1. A group is a set G with an associative composition law � , an identity element e 2 G andsuch that every element in G has an inverse.In other words, a group is a set G; an element e2G and an operation � such that for all a; b; c2G;� a � b2G� (a � b) � c=a � (b � c)� e � a= a � e= aand such that for each a2G, there is an i2G such that a � i= i � a=a:To understand how groups work, we must �rst understand how their major elements work. As we canexpect from the analogy with the positive real numbers, the identity is unique and the inverse of a givenelement is unique, too. This is what the following propositions say:Proposition 2. The identity e of a group G is unique.Proof:If e and e0 are both identities of G, then we have e= ee0= e0e= e0: �Proposition 3. The inverse of an element is unique.Proof:If i and i0 are both inverses of a, then i= ia= i(ai0) = (ia)i0= i0:�Since inverses are unique, then for a given a 2 G, we will denote its inverse by a�1: The followingproposition works as a cancellation law for group operations. It is interesting how this property is pre-served even if our elements are abstractions:Proposition 4. If a; b; c are elements of a group G and a b= a c, then b= c:Proof:If ab= ac then a�1ab= a�1ac, and thus b= c. �In addition, sometimes we might have groups within other groups. When this happens, we say that wehave a subgroup:De�nition 5. A subset H of a group G is called a subgroup of G if it satis�es the following:� For all a; b2H, a � b2H� e2H� If a2H; then a�12H:Before we move on, we need another de�nition. Notice that in the de�nition of group, we did notrequire that the elements commute (this is, that a � b= b � a for all a; b2G). When this happens, the grouphas a special name:



De�nition 6. A group G is called abelian if all its elements commute with each other.Perhaps the most simple group to imagine is the group of the positive real numbers under multiplica-tion. The number 1 would be the identity and the inverses would be taken as the regular multiplicativeinverses. However, more delicate groups arise in mathematics, and we will see some of them in later sec-tions.While studying groups, sometimes it is useful to relate them through functions that preserve theirstructure. What this last statement means is that it is useful to study functions that do not alter the waywe ``multiply." This idea is formalized through the concept of homomorphism that we give in the fol-lowing de�nition:De�nition 7. Let G and G' be two groups. A function f :G!G0 is called a homomorphism iff(a � b) = f(a) � f(b);where the �rst composition happens in G and the second one in G'.Notice that the multiplication in G and G0 need not be the same. We will see in a later example, acase in which the multiplication in G is addition of integers and multiplication in G0 is complex numbermultiplication.This de�nition gives us the idea that a homomorphism is a function that preserves the most funda-mental elements of a group. As a matter of fact, the following proposition shows us that this is true:Proposition 8. A homomorphism f : G! G0 maps the identity of G to the identity of G', and f(a�1) =f(a)�1:Proof:Let eG and eG0 be the identities of G and G' respectively. Thenf(eG) = f(eG � eG0)= f(eG) � f(eG)and thus f(eG)= eG0: Thus, eG0= f(a � a�1)= f(a) � f(a�1)and so f(a�1)= f(a)�1: �The preservation of group structure given by a homorphism can provide more control if the map isbijective:De�nition 9. A bijective homomorphism is called an isomorphism. Furthermore, if there is an isomor-phism between two groups, these groups are said to be isomorphic.Thus, isomorphisms preserve more than just basic structure. As the following example will show, theyalso preserve the ``shape":Example 10. Fix a2C such that ��a��> 1 and de�ne G= f� ; a�3; a�2; a�1; 1; a; a2; a3;� g: Then the mapf :Z!Gf(i)	 aiis a homomorphism: f(m+n)= am+n= anam= f(m)f(n):Furthermore, notice that f is clearly surjective and since the norm of a is more than 1, then the map isinjective since all the elements in G have di�erent norms. This proves that f is an isomorphism. �An important result that the following theorem will address is particularly important. It basicallystates that given a homomorphism between groups, there is a way to construct an isomorphism:



Theorem 11. Let f : G! G0 be a homomorphism, and de�ne H = fx 2 Gj f(x) = eG0g. If we de�ne thequotient group G/H4 fa �hj a2G; h2H g, then G/H and f(G) are isomorphic.Proof:This theorem is a re-statement of the �rst isomorphism theorem. We will not prove this theorem here,but a very well-done proof is in Artin's Algebra listed in the bibliography. �This last theorem is particularly powerful. It allows to contruct an isomorphism given any homomor-phism! This construction will be the aim of the next section, when we will see that the quotient of Rnand a lattice is isomoprhic to an n-dimensional torus.We will conclude this section by sketching some properties of euclidean spaces and giving some impor-tant de�nitions. Let's examine Rn, a group of special importance to our paper. An important conceptarises in the study of sets like Rn. For our practical porpuses, we will study it with a lower level of gener-ality than usual, since our exposition does not require more:De�nition 12. If m�n, a list of m vectors fl1; l2;� ; lmg2Rn is called linearly independent ifXi=1m aili=0) ai=0 for all i2f1; 2;� ;mg:De�nition 13. A list L= fl1;� ; lmg of n linearly independent vectors in Rn is called a basis of Rn. Theelements of L are then called a basis of Rn and the list is said to span Rn:This choice of names becomes clear with the following theorem:Theorem 14. Under the notation above, for any x2Rn, there exist unique constants a1;� ; an such thatx=Xi=1n ailProof:This will be admitted without proof to avoid being distracted from the objective of the paper. To seea very clean, well presented proof, see Axler's book Linear Algebra Done Right. �



LatticesWe will now introduce the concept of a lattice. Informally, the lattices are the points that de�ne a reg-ular, not necessarily rectangular grid in Rn:For example, a two dimensional lattice is similar to the following:
And a three-dimensional lattice looks somewhat like this:
However, a one dimensional lattice in R is a set of even points on the line as the next diagram shows:Notice the colored vectors in each lattice. They are called its generators. The following de�nition for-malizes this:De�nition 15. Let l1;� ; ln be n linearly independent vectors in Rn: An n-dimensional lattice L is the setof all linear combinations of the form Xi=1n aili;whereai2Z for all i:In other words, given two vectors, you add and substract them in all possible ways and the endpointsof each of the resulting vectors gives you a lattice. The even distribution of the lattice over n-dimensionalspace is partly described by saying that the intersection of the lattice and any ball centered at the originis a �nite set and that it partitions Rn into a set of disjoint subsets, as the following drawing shows:



We will now prove these properties:Proposition 16. An n-dimensional lattice in Rn is discrete.Proof:Let Br(0)= fv 2Rn j jv j � rg be an n-dimensional ball of radius r centered at the origin. Let l1; l2;� ; lnbe the generators of a lattice L. Since the li are linearly independent and there is n of them, Rn isspanned by the generators of L.Now, for a given v 2R, write v=�1l1+� +�nln and de�ne a function f :Rn!Rn such thatf(v) = (�1;� ; �n):It follows that f(Br(0)) is a bounded subset of Rn; so there exists some positive K such thatjf(v)j �K:Hence, for each v=�1l1+� +�nln2Br(0)T L, we havej(�1;� ; �n)j �K:And this implies that j�ij � j(�1;� ; �n)j �K:However, the last inequality has only �nitely many integer solutions and so Br(0)T L is �nite. �Now, to prove that Rn is partitioned into a set of disjoint sets, we need to �gure out how these setslook like. A second look at a two dimensional lattice proposes a very good candidate, as the followingdrawing shows on the shadowed area:

This is formalized through the following de�nition:De�nition 17. Given an n-dimensional lattice L � Rn with the set of generators fligi=1n , the funda-mental domain of L is de�ned as the setT =(Xi=1n aili�����0� ai< 1 for all i):And now, with this de�nition in mind, de�nition in mind, we prove the partitioning:Proposition 18. The sets fT + ljl2Lg de�ne equivalence classes over Rn under the relationship x� y ifand only if there exists l2L such that x; y 2L:Proof:Write A = Pi=1n �ili, where the li's are the generators of L and de�ne Ai = q�iy and ai = �i � Ai;where the brackets indicate integer part:



It follows that A=Xi=1n Aili+Xi=1n aili:But the �rst term of the right hand side is an element of L and the second one is in T , and so there existsan l 2L such that A 2 T + l. However, since the assignment x! (JxK; x� JxK) is bijective, this choice of lis unique. �Now we are ready to explore the relationships with toruses and lattices. We will begin by formallyde�ning a torus. We will arrive to this de�nition by �rst studying some simpler cases:De�nition 19. The circle group S is the set of all complex numbers of modulus 1.This will be our ``building block" for toruses. The following proposition is immediate:Proposition 20. S is a group under regular complex multiplication with identity 12S.Now we derive a simple yet very interesting relationship:Theorem 21. The quotient group R/Z is isomorphic to S.Proof:De�ne a function ': R ! S by '(x) = e2�ix: Then, viewing R as a group under addition and S as agroup under complex multiplication, we easily see that ' is a homomorphism. Furthermore, it is clearthat ' is surjective and, �nally, since '(Z) = f1g, it follows that there is an isomorphism between R/Z andS, and we are done. �The techniue used in the past proof is the basis for the proof of the statement's generalization. Toarrive to this stronger result, consider the de�nition of a torus:De�nition 22. For n2Z+; de�ne the n-dimensional torus T n as the cartesian productT n=S �S �� �Sof n copies of S.For example a 2-dimensional torus can be represented as shown in the following drawing:The expected generalization of the past theorem with this new de�nition is as expected:Theorem 23. If L is an n-dimensional lattice in Rn, then Rn/L is isomorphic to T n.Proof:Let fligi=1n be the generators of L. Since this same set spans Rn, then we can de�ne a map ':R!T nsuch hat '(a1l1+� +anln)= (e2�ia1;� ; e2�ian):As before, it is clear that ' is a surjective homomorphism and since '(L) = (1; � ; 1); it follows that Rn/Lis isomoprhic to T n. �To illustrate this some more, consider the following process that represents the transformation of afundamental domain of a lattice in R2 into a torus:



Sums over latticesNow we will study the properties of the sums taken over the points of a given lattice to learn that thefunction }, as we will de�ne it later, provides us with an alternative to create a relatively controllable,absolutely convergent series.We will consider by considering the �rst sums we think of that involve all the points of a lattice:Proposition 24. For any lattice L 2 C, the series Pl2L l�n is not absolutely convergent if n 2 f1; 2gand is absolutely convergent if n2f3; 4; 5;� g:Proof:Let Rk be the parallelogram in C whose vertices form the set f � 2kl1; � 2kl2g, where k 2 Z is �xedand the li's are the generators of the lattice. A counting argument shows that the sides of this parallelo-gram contain exactly 16k points of the form 2al1 + 2bl2, where a and b are integers with absolute valueless than or equal to k. Let Sk be this set and let S=Si=11 Si:Now let D1 be the largest distance from the origin to a point in R1 and let d1 be the shotest distancesimilarly de�ned. Then, for all z 2S1; d1� ��z���D1:Thus, for all z 2S2; we hace 2d1� ��z��� 2D1:And so on so that for all z 2Sk; kd1� ��z��� kD1:Hence, Xz2S1 jz j�n� 16 � 1(1 �D1)nXz2S2 jz j�n� 16 � 2(2 �D1)nXz2S3 jz j�n� 16 � 3(3 �D1)nAnd so Xz2S jz j�n� 16D1nXi=11 1in�1but the series on the right diverges for n2f1; 2g, and, sinceXz2L jz j�n>Xz�S jz j�n;it follows that the sum in our proposition diverges for n� 2:Now, for n� 3, a similar argument shows thatXz2Sk jz j�n� 16k(k � d1)n :And so Xz2S jz j�n� 16d1nXi=11 1in�1 ;which converges for n� 3: Finally, notice that, by counting each point in S enough times,4Xz2S jz j�n>Xz2L jz j�nand so the series to the right converges for n� 3; andwe are done:�



The past proposition answers the question of how convergent series can be de�ned on lattices. Now, inan attempt to take this further, it is normal to ask when more complicated functions can be constructedfollowing a similar method. The following de�nition is a good way to start answering this question:De�nition 25. Let L be a lattice. For n� 3, de�ne a function Pn:C/L!C such thatPn(z) = Xl2L�f0g (z� l)�n:The following proposition, which will be admitted without proof it follows a similar method to oneshown later on, provides insight on the convergence of Pn:Proposition 26. For n � 3 and any positive constants K and k, the series given by Pn(z) is absolutelyconvergent for all z such that jz j �K and jz� l j � k for all l2L.Notice that what this proposition means is that the series converges in any bounded region that doesnot contain lattice points. However, this is not the case for n=2. Trying to describe circumstance in whichthere is convergence, we introduce the Weierstrass } function:De�nition 27. Let L 2 C be a lattice and let L0 be the lattice excluding the zero point. We de�ne itsassociated Weierstrass } function by }(z)=Xl2L0  1(z� l)2 � 1l2!:By de�ning such a function, we are ``taking away a little" of each term to give the absolute convergencedescribed in the following theorem:Theorem 28. The de�ning series for }(z) is absolutely convergent for all z 2 C such that jz j � K andjz� l j � k for all l2L.Proof:Let S 0 be the set of all l 2 L0 such that jl j � 2K: Furthermore, let S be the set of all l 2 L such thatjlj> 2K:Clearly; S 0 is �nite andXl2L0  1(z� l)2 � 1l2!=Xl2S 0  1(z� l)2 � 1l2!+X  1(z� l)2 � 1l2!:Now, since S 0 is �nite, the �rst term of the right hand side is well de�ned for our choice of z and itde�nes a meromorphic function with discontinuities at each lattice pole. Disregard this term for a momentand notice that, for l2S; ����zl ����< K2K = 12and 1(z� l)2 = 1l2" 1(1� zl )2#;so using the power series expansion for 11�x and Merten's theorem for multiplying series,1(z� l)2 = 1l2�1+ 2zl +3�zl �2+4�zl�3+� �;which gives 1(z� l)2 � 1l2 = zl3�2+3�zl �+4�zl�2+� �:



Taking absolute values, this gives ����� 1(z� l)2 � 1l2�����< Kjl j3Xi=21 i2i�2But the series on the right hand side is convergent, so let T be its limit. By taking the sum over S, weget Xl�S ����� 1(z� l)2 � 1l2 �����<KTXl�S 1jlj3 :But the right hand side converges, so the series de�ned by }(z) is absolutely convergent for any z not inthe lattice. �From this, the following corollary is immediate:Corollary 29. }(z) is di�erentiable on C/L and}0(z)=� 2X 1(z� l)3 :This shows that }0 is analytic everywhere except on the points of the lattice and, furthermore, for thegenerators l1 and l2 of L, we have, for all z in the region of convergence,}0(z+2li)= }0(z):Integrating, it follows that, for some constants C1; C22C;}(z+2li)= }(z)+Ci:Setting z=� li in the last equation gives }(li)= }(� li) +Ci:But since } is absolutely convergent at a point l2C then � l 2C and the sum}(� z)= 1z2 +Xl2L  1(z� (� l)2 � 1(� l)2!is merely a rearrangement of }(z) and so it equals it. Thus Ci=0 and so } is doubly periodic.



The Weierstrass } FunctionWe will conclude after showing some very interesting properties of the function } de�ned in the lastsection. To do this, recall that } was de�ned over a complex lattice and consider the following:Theorem 30. The integral � Z Z }(u) du dude�nes an absolutely convergent series.Proof:Notice that � Z }(u)du=�Z 1u2du�Z Xl2L�f0g f 1(u� l)2 � 1l2gand the latter, by the uniform convergence of the sum, gives� Z }(u)du= 1u + Xl2L�f0g f 1u� l � ul2 +Clg:However, the rightmost sum is not always convergent, but writing Cl= 1l gives� Z }(u)du= 1u + Xl2L�f0g f 1u� l � ul2 + 1l gAnd the latter expression is clearly absolutely convergent for all u � L.Integrating once again we get� Z Z }(u) du du= lnu+ Xl2L�f0g fln(1� ul )+ ul + u2w2gFix R> 0: Now let L1= fl2L�f0g such that jl j � 2Rgand L2= fl 2L�f0g such that jlj> 2Rg:Hence � Z Z }(u) du du= lnu+Xl2L1 fln(1� ul )+ ul + u2w2g+Xl2L2 fln(1� ul )+ ul + u2w2gbut the leftmost sum is �nite for u� l and, by expanding the logarithm, the rightmost sum can be writtenas Xl2L2 fln(1� ul )+ ul + u2w2g=Xl2L2 f� 13(ul )3� 14(ul )4�� gand the latter is absolutely convergent for u� l under the restriction l2L2:This completes the proof. �Consider the following de�nition:De�nition 31. For a given lattice L, de�ne its invariantsg2=22 � 3 � 5 Xl2L�f0g 1l4 ;g3=22 � 5 � 7 Xl2L�f0g 1l6 :



It is clear that both g2 and g3 are �nite for a given lattice. The need for this de�nition becomes clearwiththe following theorem, whose solution we will just sketch:Theorem 32. If }; g2 and g3 are de�ned over the same lattice L; then there exist functions constants ci;jsuch that i2f1; 2g, j 2f3; 4;� g and}(u)= 1u2 + g222 � 5u2+ g322 � 7u4+Xj�3 c1;ju2jand }0(u) =� 2u3 + g210u+ g37 u3+Xj�3 c2;ju2j�1:Proof:The solution to this problem involves the introduction of several new functions outside of the scope ofthis paper. However, the proof is worth sketching since the way these functions are related is truly subtleand beautiful.One de�nes the function �(u)= e�RR}(u)duduand gets }(u)=� d2du2 ln�(u):Furthermore, it can be shown, by manipulation of the de�nition of �, that�(u)=u� 12 Xl2L�f0g 1l4 u5� 13 Xl2L�f0g 1l6 u7��which implies that �(u)=u� g224 � 3 � 5 u5� g323 � 5 � 7u7�Xj�4 Xl2L�f0g 1l2j u2j+1and that � 0(u)�(u) = 1u � g222 � 3 � 5 u3� g322 � 5 � 7u5�Xj�4 Xl2L�f0g 1l2j u2j�1:From this, it follows that}(u) =� d2du2 ln (�u) =� dduf� 0(u)�u g= 1u2 + g222 � 5 u2+ g322 � 7u4+�and, �nally, }0(u)=� 2u3 + g210u+ g37 u3+� �An essential characteristic of the Weierstrass function is described in the following theorem:Theorem 33. If }, g2 and g3 are generated from the same lattice then[}0(u)]2=4[}(u)]3� g2}(u)� g3:Proof:Again, this proof will be outlined. From the past theorems, we get that[}0(u)]2= 4u6 � 2g25 � 1u2 + 3g322 � 7 + f1(u2)and [}(u)]3= 1u6 + 3g222 � 5 � 1u2 + 3g322 � 7 + f2(u2)where f1 and f2 are absolutely convergent powerseries of u whose term with lowest degree has degree atleast 2.



After some manipulation of the latter expressions, we get that[}0(u)]2� 4[}(u)]3+ g2}(u)+ g3= f3(u2);where f3 is de�ned as f1 and f2:However, the left hand side is doubly periodic so, by Liouville's theorem, since by de�nition f3 is dif-ferentiable everywhere, both hand sides are equal to a constant, and so f3(u2) = 0 and the desired equa-tion is attained. �



ConclusionWe have just exposed the most basic property of the Weierstrass } function, the di�erential equationthat relates it to elliptic curves. The following theorem gives us a very close relationship suggesting a linkbetween the } function and elliptic curves:Theorem 34. (Weierstrass Normal Form) Every nonsingular cubic curve in the complex projective planeis projectively equivalent to a curve which in a�ne coordinates takes the Weierstrass normal formy2=4x3� g2x� g3:where g2 and g3 are complex constants.This theorem gives us a link between the form of an elliptic curve and a speci�c } function, thus asso-ciating a } function to the curve. Since the function is associated with a lattice (speci�cally with the quo-tient of the complex plane with a lattice), this gives us an association between elliptic (more generally,cubic) curves and quotients groups between the complex plane and lattices.However, this relationship goes beyond this point and relates the group structures of certain groups.Elliptic curves can be viewed as groups where the composition operation between its points is a way ofconstructing a third point.As a matter of fact, let C be an elliptic curve and let � be its composition operation. With a properchoice of identity, the following is true:Proposition 35. Under the last paragraph's terminology, if (x3; y3)= (x1; y1)� (x2; y2), thenx3= 14( y1� y2x1�x2)2� (x1+x2)and y3= y1� y2x1�x2x3+ x1y2�x2y1x1�x2And, it can be proven using Liouville's theroem that the functionh(u) = }(u+ v)� 14(}0(u)� }0(v)}(u)� }(v) )2equals zero. By di�erentiating it, we �nd that the triplets (x1; x2; x3) and (y1; y2; y3) satisfy the same equa-tions as the triplets (}(u); }(v); }(u + v)) and (}0(u); }0(v); }0(u + v)) ; and the following elegant relation-ship, which comes after formally identifying these triplets:Theorem 36. The group structure of an elliptic curve has the property(}(u); }0(u))� (}(v); }0(v)) = (}(u+ v); }0(u+ v)):And with this, the group structure of an elliptic curve can be viewed in terms of the associated Weier-strass function.However, more relationships can be deduced between this function and its derivative, the associatedelliptic curve has a more intricate relationship than the one shown in this paper. However, a more thor-ough understanding of these connections requires tools that take many years to develop.
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