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1 Introduction.

This paper explores the generalization of classical (finite-dimensional) Galois theory via the
Krull topology. The proofs behind the Galois theory of finite extensions are not given, but
rather the formalism of the infinite case is examined in depth. The Galois group of the algebraic
closure of a finite field is characterized both through its profinite structure and via a
construction analogous to the Krull topology. We are thus able to prove that this extension is
isomorphic to the Cartesian product over all primes of the p-adic integers.

2 Section. Finite Galois Theory.
Definition 1. The Galois group of a given field extension K /F, Gal(K/F), is defined as
{oeAwt(K) | o(f)=fV feF}. 1)

forming a group under composition. The extension K/F is called “Galois” if it is the splitting
field for a collection of polynomials P C F[z] (K/F is normal), where each f € P is separable

(K/F is separable). Then K/F is the minimal field extension in which each separable
polynomial f € P splits into its distinct linear factors in K[z].

Example 2. ®The algebraic closure (or the maximal algebraic extension) of a field G, finite or
with char(G) =0, is Galois. This holds since G/G is the splitting field for the collection of every
separable polynomial in G, since (in fields such as G where every minimal polynomials is
separable) a non-separable polynomial has the same splitting field as the largest separable
polynomial that divides it.

A field H whose algebraic closure is not Galois must be infinite but with finite characteristic,
such as the field R(IF,[z]) of all rational functions in IF,[z]. Such a field R has multiplicative
inversion just as Q; but the identity = 1 has additive order ¢, so char(H) = ¢q. The minimal
polynomial of \/z, y* + = = 0, does not ‘“‘separate” in the given rational field: 32> + = = (y +

V) (y +/x).?

Theorem 3. Let K be a finite Galois extension of F; let G = Gal(K/F). For any group H of
automorphisms of K, let K C K denote the “H-invariant subfield” of K, the unique maximal
field satisfying h(Kf)=K®” ¥V he€ H. Then

a. There is a 1-1 correspondence between sub-extensions K D L D F and sub-groups H < G such
that H = Gal(K /L), via L = K¥. This is an “order-reversing” correspondence (by inclusion)
since larger field extensions of F' correspond to smaller subgroups of G.

b. For any normal subgroup H <G such that H = Gal(K /K ),

[K: K" =|H|and [K": F]=[G: H], (2)
where [ ] denotes degree of an extensions or the index of H in G (the cardinality of G/H). || is
the order of a group.

c. The extension K /F is Galois < the subgroup H is normal < Gal(K¥/F) = G /Gal(K /KH)
via the restriction 0 € G+ g |gn. 1234910

Definition 4. An inverse system is a pair ({M;}, ¢;;), a collections of appropriate objects (often
groups or modules over a commutative ring) and corresponding homomorphisms such that

GjiM;—M;,i<j (3)
¢iilm)=m, VY me M; (4)
1<j<k= ¢ri=0jio drj. (5)
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Definition 5. °The inverse limit, denoted lim. , of a given inverse system ({M,}, ¢;;) can be
constructed as follows:

l(iﬂlMi: {(ml)lej :if 4 S j,then m;= ¢)71(m7)} C H M.L' (6)
iel
Thus the inverse limit is the set of all sequences of elements such that each member of the
sequence is the image of any other sequence (with index not less) under their corresponding
homomorphism.

3 Infinite-Dimensional Galois Extensions.

An infinite algebraic extension K /F is Galois if it is the union of finite subfields E each Galois
over F', since then K is the splitting field for the union of all collections of separable polynomials
split by E. However, the characterization of the Galois group is more difficult. The Galois
group of E; is given by the quoteints of Gal(K/F') by infinite normal subgroups, not by finite
subgroups.

Section 3.1 describes the Krull topology and gives two lemmas, and 3.2 generalizes the
fundamental theorem.

Note 6. Here I worked from two very concise formulations of the generalization to the infinite
case, refs. (1) and (3). I tried to flesh out all proofs sketched or omitted there.

3.1 Topology on the Galois Group.

Inital lemmas are given along with the construction of the Krull topology, used for the proof of
theorem 15.

Lemma 7. Let K D L D F be fields with K /F Galois, not necessarily of finite degree. Then
KGa](R’/L) - L.

Note 8. This is not immediately true since it is conceivable that one element of the extension
cannot be permutated without perturbing the base field (though theorem 3 prohibits this for the
finite case).

Proof. 3KGal(K/L) 5 T, by the basic definition of the Galois group. Obtain the opposite inclusion
by contrapositive: take an arbitrary element £ € K — L. To satisfy the conditions for Zorn’s
lemma,% 1 let the subextensions L', where K D L’ D L, form a partially ordered set inclusion.
Let the same order apply to the corresponding Galois groups Gal(L’/L); call G the (po)set of all
such Galois groups not fixing €. All finite extensions containing £ are in G by theorem 3. Then
Gal(K /L) is an upper bound on G. Since K is a union of finite extensions, there exists a chain
of finite L” D L such that no maximal element can be distinct from K. Then Gal(K /L) must be
a maximal element in G of the chain of corresponding Gal(L"”/L) € G, and so does not fix
arbitrary £ € K — L.

Note 9. (3) did not specify how Zorn’s lemma was to be applied. O

3Consider the collection of all E;, K D E; D F, with [E;: F] < co and E;/F Galois. Then let

Lemma 10. 3G; <1 G, therefore G /G; = S,;.

Proof. Given any finite Galois E] D E;, G;|p: = Gal(E//E;) < Gal(E]/F) = G|g, by theorem 3,
and since K is a union of E;, it must hold that G; < G.

If there exists € € E; for which (&) ¢ E; for some o € G, then (&) will be moved by some v € G;
(by lemma 7) so that (since G; is a normal subgroup) v(£) = o~ 'yo (&) # & which is impossible
since G; fixes E;. Then o|g, is an automorphism of ;. Two members ¢, d of a coset in G/G;
satisfy ¢~ '0|g, = idg,, the identity on Ej, so ¢ g;- Thus the group G/G; = {o|r, Vo € G}
is the complete set of automorphisms of F; fixing F'.

E',':(s
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Note 11. This statement was given without explanation in reference 3. O

If E; D E;, then there is a natural homomorphism
where ¢, ;restricts o € E;|p,;. Then (E;, ¢;;) forms an inverse system.

Theorem 12. 3G = limS; = limG/G;, with ¢, : G — G /G; = S; being the canonical projection as in

(7). — —

Proof. Since K/F is algebraic, any ¢ € K lies in some E;. Then Vo € G, (&) =
(¢pio) (&) for that same i. Hence o is uniquely determined by the nature of all the ¢,o (since the
values of o over all ¢ are determined by some FE;), and thus can be written as the inverse
limit. (I

Now we continue to describe the Krull topology. Construct the map'

o—olg:G— H Gal(E;/F) (8)
E,CK

As above, this is correct since each restriction is in fact an automorphism of FE;. Give every
finite Gal(E;/F') the discrete topology. Give [[ Gal(E;/F) the product topology. We can give
Gal(K/F) the subspace topology in [[ Gal(E;/F') since (8) is injective by definition of K. So
equivalently, two elements are in the same open set if their restriction to a given E; is the same
(and unions of these sets can form any larger open sets generated by the product topology).

Note that any set G/G; corresponding to a finite Galois extension is also trivially closed since its
complement is null. In fact, the product topology is the least refined topology such that all
projections from the product to the components are continuous; so each ¢; is continuous exactly
between G and its finite Galois subextensions, allowing for a sharp application of finite Galois
theory resulting in the “if and only if” statement of theorem 15.5

Furthermore, we can make several statements about Gal(K/F). FEach subgroup Gal(E;/F) is
dicrete, therefore compact: so [] Gal(K/F) is compact by the Tychonoff theorem. The image
of Gal(K/F') is closed in the product since any product element x ¢ Gal(K/F') contains a pair
of restrictions prohibited for o € Gal(K /F) by inclusion of E;, a pair of inclusions which can be
required by the open set containing y. Thus Gal(K/F) is compact, since it is a closed subset of
a compact set. It is Hausdorff, since two distinct elements contain a distinct restriction to some
E;. It is also ‘“‘totally disconnected” since any open set can be partitioned by any E; since all
are discrete. In fact, these last three are general properties of the ”profinite topology” which
apply here since we have simply adapted the profinite topology to exclude non-Galois normal
extensions.

Furthermore, the open subgroups Gal(K/E;) form a system of neighborhoods of 1 (the identity)
in Gal(K/F).

3.2 Generalized Galois Correspondence

Lemma 13. ® Let H < G. Then, H = Gal(K /L) for some field L, K D LD F (namely L = K7) &
H is closed in G.

Proof. * (=) Let H=Gal(K /L), let c € H in G, and let £ € L.

If 0(£) =&, then, o € H so that H = H implies that H is closed, hence done.

Let Ko C K be the splitting field of the minimal polynomial of £ over F', so that K,/F is Galois
and [KUI K] < oo. Let G() = Gal(K/K(]), S(] = Gal(K(]/F), and ¢0 G > S(] = G/G(] be the
projection. Since Sy is discrete, ¢goH C Sy is closed. Hence ¢ '¢oH is closed in G by continuity
of ¢g. Leave ¢ fixed; then since o lies in the closure of H, and ¢51¢0H is a closed set
containing H (and hence its closure), o € ¢y '¢oH so that o (&) = €.
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(< ) Let H < G be closed. H C Gal(K/K™) follows by definition 1. Then prove the
contrapositive of H D Gal(K/K™), the statement 0 ¢ H= o ¢ Gal(K/K'). H is closed= H®>
o is open = Jopen basisset N 3 os. t. HN N = () = 3 finite Galois extension K;/F with ¢;:G —
Sy = Gal(K;/F) such that ¢10 ¢ p1H (= 0|k, ¢ H|k,). Then Kf’lH C K, is fixed by H so that
K" ¢ KH; and ¢i0 ¢ ¢;H = Gal(KP'"/F) = K" is not fixed by ¢10 by the 1-1
correspondence of theorem 3, establishing the contrapositive.

Note 14. The Krull topology results in this precise statement because the open basis sets
correspond to the elements only of finite Galois extensions, so that H is closed implies that
every element of the complement projects to a finite Galois extension allowing the use of the
inclusions of finite Galois theory in ( < ). The ( = ) implication would hold for any continuous
projection in a profinite topology. (I

Theorem 15. 3Generalized Theorem 3. Let K /F be an arbitrary Galois extension. Then there
is a one to one correspondence between fields L with K D L D F and closed subgroups H < G.

Proof. The maps defining the correspondence are exactly as in theorem 3, with the exception
that they refer only to closed subgroups, not arbitrary subgroups. Lemma 7 ensures that this
correspondence is an injection from subfields to subgroups; lemma 13 identifies the image of the
subgroups as the set of all closed subgroups of G. O

4 Extensions of a Finite Field.

All finite extensions of a finite field I, must have order in powers of ¢ since each basis element
of the extension is cyclic of order g under scalar multiplication; non-prime-power orders are not
allowed since divisors of zero would occur. Thus any finite field extension is of the form IF,m/
F,» where n|m. Then the order of I}, the group (F, — {0}, x ), is ¢ — 1, i. e. 2971 =1.

In order to construct such a field extension, one can take IF,» = F[x]/i,(z), where i,(x) is an
irreducible polynomial of degree n in IF,,. There are p™ elements of degree < n, the members of
IF,»;no divisors of 0 exist since the polynomial is irreducible.

The following recasting is more practical: take IF,» = IF,[4,], where j, satisfies i,,(j,) =0. Then
IF,. is the set of all polynomials in j, of degree less than n. Likewise no divisors of 0 exist.
Then it remains to verify that such an i,(z) can be found in all cases.

Theorem 16. In any polynomial ring IFp[z], there exists an irreducible polynomial of degree n
Vn.

Proof. As for any field, any polynomial over a finite field can be split completely into linear
factors in some extension. Consider the polynomial f(x) =2P"~'—1. Then f(z) =0V 2 #0¢€
F,n, since the order of Fy» = p™ — 1. Thus f(j,) = 0, so if F,. exists, there must be an
irreducible polynomial of degree n among the factors of f, so we can show that this is required
for unique factorization in F,. Then f(z) = z®~DE"+2" >+ 41 _ 1 Ag with Fpn, all
irreducible factors of f(z) come from a field of order equal to some factor of the exponenent.
Since (p" '+ p" 2+ ... +1) % p* — 1 for any n’ < n, the irreducible factors are of degree either
1 or n. Since every element not containing 7, is a root, their product, z? 1 — 1, divides f(z).
Then f(z)/(xP~ 1 —1)= (xP" P+ aP" 2PFL 4 " =372 4 4 1) = gP(P" 1) Pt 12
P 1B 4 41 = Zi:]n 2P~V wherem= p" '+ p" 24 ...+ p. Then for F,, in
which each element has order p — 1, each term is equal to 1, so the sum is equal to p"~! +
p" 2+ ...+ p+ 1, which is not divisible by p. Thus there are no further linear factors in ¥,
and the remaining factors must be irreducibles of degree n. |

Note 17. This proof was attempted by induction on n, but the combinations of reducibles and
irreducibles did not fit a convenient analytical description.

The Galois group of such an extension consists strictly of powers of the Frobenius automorphism
o pra—a™ for n <m = deg(IF,~/IF,) since the extenion has order deg(IF,~/IF,). This is the
only nontrivial mapping that fixes the elements of the original field. Hence the Galois group is
cyclic of order m.
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5 Two proofs of isomorphism of Gal(Fpn /Fpn)to I, primeZp:

This final section uses the Krull topology and theorem 15 to characterize the Galois group of a
finite field, proving its isomorphism to the product (over all primes p) of the ring of p-adic
integers.

Theorem 18. Gal(F, /FF,) ~ I1, prime Zp-

Proof. (1)3(By inverse limits) For any n there is a unique finite Galois extension K, i. e. a
subextension of K invariant under the action of the g Frobenius element of n’th degree = S™:
= Gal(K"7/K) is cyclic of order n and generated by o as above. S”~7/(n) viac” — v modn, i.
e. where composition of o corresponds to addition on Z/(n). We thus know that K™ D> K™ if
and only if n|m since K™ must preserve the cyclic structure of K™. In this case we have a
homomorphism ¢, , : Z/(m) — Z/(n) via v mod m — v mod n, so that the larger structure
simply reduces to the smaller structure; hence we have an inverse system of Galois groups. Now
note that when (m’,n') =1, then the field extension K™ U K™ = K™™' since they fix their least
common multiple. Then S™" ~ S™ x S™ since any of m'n' distinct elements of S§™™
corresponds to exactly one permutation of m’ and one of n' in order to fix S™™".

We can use an inverse limit to describe the Galois group over powers of some p since each larger
group contains the smaller, so we simply want the combination of all of them out to infinity.
Thus we can describe the Galois group:

G =Gal(K [F,) = KN = gTlpinc?"}, 9)

where the superscript at right denotes the set of all prime factorizations of the positive integers.
The rightmost equality follows from the lemma 7. Then, by the two relations just given for
prime powers and composite with coprime factors, and by isomorphism of an individual group

to Z/(p"):
G =5 o T 1ms” ~ [ lwz/(p")= [ Z (10)

p prime p prime p prime

O

Proof. (2)! (by construction isomorphic to Krull topology) Retain the definitions of proof (1).
First note that by theorem 15, G is the closure of B: = (o) in the Krull topology, i. e. the
smallest Galois group containing B, since here the algebraic closure is Galois. So we want to
construct the closure of B with respect to the Krull topology.

B C G is the set of all powers of 0. Biject each element of (o) with Z by its power, and describe
the Krull topology on Z. Any a, b € N are contained in the same open subset if they are
congruent mod n for some n, as then 0%, = o”|p,. (all finite extensions are Galois) since
Gal(FFp»/IF,,) is cyclic order n. Then each open basis set is defined by a pair v, n such that z =
v mod nVz € N. Then given two open basis sets M, N, defined by the respective residues v,,,
Un,Um=vmodn= M D N iff n|m (as in proof (1)). Thus a sequence of larger n divisible by all
previous n is a nested collection of neighborhoods whose intersection is the identity in B, and
any open set is part of such a nested subset of the overall system of neighborhoods. These are
neighborhoods of 0 in Z, i. e. the unrestricted ¢, the identity, 1, on G as mentioned in the
general construction.

Since we are dealing strictly with a system of neighborhoods, the closure of this set is equivalent
to its completion under the norm of inclusion on these neighborhoods. So we take the usual
closure of such a topological group, where the set of all Cauchy sequences are included in the
group. A Cauchy sequence (ai)Q],ai € 7., satisfies the condition that for all n > 1, there exists N
s.t.4,j >N =a;=a;modn. Call such a Cauchy sequence “trivial” if Vn > 13 n suchthat a; =
0 mod n, i. e. it behaves like the identity for n sufficiently large. The Cauchy sequences form a
commutative group under addition of elements, and the trivial Cauchy sequences form a
subgroup. Then define 7 to be the quotient of the first group by the second. It has a ring
structure (by that of 7Z component-wise).
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By the Chinese Remainder Theorem, an element of such a Cauchy sequence in Z can satisfy a
finite number of arbitrary congruences (provided they reduce feasibly over powers of the
individual p), so the limit can achieve countably many congruences (a set of congruences over all
p and n is countable). Then each coset in 7 is identified with a set of congruences
vp» modulo each p™ € 7 achieved in the limit ¢ — oo; the set of congruences is subject only to the
requirement that reduction mod p™ is again a homomorphism of v; (i. e. for n > m, vpn =
vpm mod p™). Likewise, an element of the ring of p-adic integers 7, satisfies any set of
congruences over p™ allowing for reduction, since Z, is the set of all Z;’io ap'a’ € {0,...,p— 1},
so that a; =v,: , and Hp Z, can satisfy any set of such congruences over separate primes.

prime

Addition on prrime 7, is done component-wise, and maintains the exact analogy with

compsition (addition of powers) on the Galois group.
Thus, by constructing the completion (closure) in the Krull Topology of the group generated by
the Frobenius automorphism, we have another proof that

Il %,~GauF, /F,). (11) O

p prime
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Note 19. The most important thing that this paper taught me is that it makes a whole lot more
sense to bite the bullet and learn math from textbooks and their exercises than to try to be
edified by groping for proofs yourself.



