
Galois Theory and Algebraic Closuresby Alex WaldronSupervised by William Stein and Grigor Grigorov1 Introduction.This paper explores the generalization of classical (�nite-dimensional) Galois theory via theKrull topology. The proofs behind the Galois theory of �nite extensions are not given, butrather the formalism of the in�nite case is examined in depth. The Galois group of the algebraicclosure of a �nite �eld is characterized both through its pro�nite structure and via aconstruction analogous to the Krull topology. We are thus able to prove that this extension isisomorphic to the Cartesian product over all primes of the p-adic integers.2 Section. Finite Galois Theory.De�nition 1. The Galois group of a given �eld extension K/F , Gal(K/F ), is de�ned asf� 2Aut(K) j �(f)= f 8 f 2F g; (1)forming a group under composition. The extension K/F is called ``Galois" if it is the splitting�eld for a collection of polynomials P � F [x] (K/F is normal), where each f 2 P is separable(K/F is separable). Then K/F is the minimal �eld extension in which each separablepolynomial f 2P splits into its distinct linear factors in K[x].Example 2. 5The algebraic closure (or the maximal algebraic extension) of a �eld G, �nite orwith char(G) = 0, is Galois. This holds since G�/G is the splitting �eld for the collection of everyseparable polynomial in G, since (in �elds such as G where every minimal polynomials isseparable) a non-separable polynomial has the same splitting �eld as the largest separablepolynomial that divides it.A �eld H whose algebraic closure is not Galois must be in�nite but with �nite characteristic,such as the �eld R(Fq[x]) of all rational functions in Fq[x]. Such a �eld R has multiplicativeinversion just as Q; but the identity = 1 has additive order q, so char(H) = q. The minimalpolynomial of xp , y2 + x = 0, does not ``separate" in the given rational �eld: y2 + x = (y +xp )(y+ xp ).5Theorem 3. Let K be a �nite Galois extension of F ; let G = Gal(K/F ). For any group H ofautomorphisms of K, let KH �K denote the ``H-invariant sub�eld" of K, the unique maximal�eld satisfying h(KH) =KH 8 h2H . Thena. There is a 1-1 correspondence between sub-extensions K �L�F and sub-groups H <G suchthat H = Gal(K/L), via L = KH. This is an ``order-reversing" correspondence (by inclusion)since larger �eld extensions of F correspond to smaller subgroups of G.b. For any normal subgroup H CG such thatH = Gal(K/KH),[K:KH] = jH j and [KH:F ] = [G:H ]; (2)where [ ] denotes degree of an extensions or the index of H inG (the cardinality of G/H). j j isthe order of a group.c. The extension KH/F is Galois, the subgroup H is normal, Gal(KH/F ) < G/Gal(K/KH)via the restriction � 2G� � jKH:1;2;3;4;9;10De�nition 4. An inverse system is a pair (fMig; �ji), a collections of appropriate objects (oftengroups or modules over a commutative ring) and corresponding homomorphisms such that�ji :Mj!Mi ; i� j (3)�ii(m)=m; 8 m2Mi (4)i� j � k) �ki= �ji� �kj: (5)1



De�nition 5. 5The inverse limit, denoted lim ; of a given inverse system (fMig; �ji) can beconstructed as follows:lim�Mi= f(mi)i2I : if i� j ; thenmi= �ji(mj)g�Yi2I Mi (6)Thus the inverse limit is the set of all sequences of elements such that each member of thesequence is the image of any other sequence (with index not less) under their correspondinghomomorphism.3 In�nite-Dimensional Galois Extensions.An in�nite algebraic extension K/F is Galois if it is the union of �nite sub�elds E each Galoisover F , since then K is the splitting �eld for the union of all collections of separable polynomialssplit by E. However, the characterization of the Galois group is more di�cult. The Galoisgroup of Ei is given by the quoteints of Gal(K/F ) by in�nite normal subgroups, not by �nitesubgroups.Section 3.1 describes the Krull topology and gives two lemmas, and 3.2 generalizes thefundamental theorem.Note 6. Here I worked from two very concise formulations of the generalization to the in�nitecase, refs. (1) and (3). I tried to esh out all proofs sketched or omitted there.3.1 Topology on the Galois Group.Inital lemmas are given along with the construction of the Krull topology, used for the proof oftheorem 15.Lemma 7. Let K � L � F be �elds with K/F Galois, not necessarily of �nite degree. ThenKGal(K/L)=L.Note 8. This is not immediately true since it is conceivable that one element of the extensioncannot be permutated without perturbing the base �eld (though theorem 3 prohibits this for the�nite case).Proof. 3KGal(K/L)�L by the basic de�nition of the Galois group. Obtain the opposite inclusionby contrapositive: take an arbitrary element � 2 K � L. To satisfy the conditions for Zorn'slemma,6;10 let the subextensions L0; where K � L0 � L, form a partially ordered set inclusion.Let the same order apply to the corresponding Galois groups Gal(L0/L); call G the (po)set of allsuch Galois groups not �xing �. All �nite extensions containing � are in G by theorem 3. ThenGal(K/L) is an upper bound on G. Since K is a union of �nite extensions, there exists a chainof �nite L00�L such that no maximal element can be distinct from K. Then Gal(K/L) must bea maximal element in G of the chain of corresponding Gal(L00/L) 2 G, and so does not �xarbitrary � 2K �L.Note 9. (3) did not specify how Zorn's lemma was to be applied. �3Consider the collection of all Ei, K � Ei � F , with [Ei: F ] < 1 and Ei/F Galois. Then letGal(K/Ei) =Gi andGal(Ei/F )=Si:Lemma 10. 3GiCG; thereforeG/Gi< Si:Proof. Given any �nite Galois Ei0 � Ei, GijEi0 = Gal(Ei0/Ei) C Gal(Ei0/F ) = GjEi by theorem 3,and since K is a union of Ei0, it must hold that GiCG.If there exists � 2Ei for which �(�) � Ei for some � 2G, then �(�) will be moved by some  2Gi(by lemma 7) so that (since Gi is a normal subgroup) (�) = ��1�(�) � � which is impossiblesince Gi �xes Ei. Then � jGi is an automorphism of Gi. Two members & ; � of a coset in G/Gisatisfy &�1� jEi= idEi, the identity on Ei, so & jEi= � jEi. Thus the group G/Gi < f� jEi 8 � 2Ggis the complete set of automorphisms of Ei �xing F .
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Note 11. This statement was given without explanation in reference 3. �If Ei�Ej, then there is a natural homomorphism�ij :Si=Gal(Ei/F )!Sj=Gal(Ej/F ) (7)where �ij restricts� 2EijEj. Then (Ei; �ij) forms an inverse system.Theorem 12. 3G = lim�Si= lim�G/Gi; with �i : G! G/Gi = Si being the canonical projection as in(7).Proof. Since K/F is algebraic; any � 2 K lies in some Ei. Then 8 � 2 G; �(�) =(�i�)(�) for that same i. Hence � is uniquely determined by the nature of all the �i� (since thevalues of � over all � are determined by some Ei), and thus can be written as the inverselimit. �Now we continue to describe the Krull topology. Construct the map1�� � jEi :G! YEi�K Gal(Ei/F ) (8)As above, this is correct since each restriction is in fact an automorphism of Ei. Give every�nite Gal(Ei/F ) the discrete topology. Give Q Gal(Ei/F ) the product topology. We can giveGal(K/F ) the subspace topology in Q Gal(Ei/F ) since (8) is injective by de�nition of K. Soequivalently, two elements are in the same open set if their restriction to a given Ei is the same(and unions of these sets can form any larger open sets generated by the product topology).Note that any set G/Gi corresponding to a �nite Galois extension is also trivially closed since itscomplement is null. In fact, the product topology is the least re�ned topology such that allprojections from the product to the components are continuous; so each �i is continuous exactlybetween G and its �nite Galois subextensions, allowing for a sharp application of �nite Galoistheory resulting in the ``if and only if" statement of theorem 15.5Furthermore, we can make several statements about Gal(K/F ). Each subgroup Gal(Ei/F ) isdicrete, therefore compact: so Q Gal(K/F ) is compact by the Tychono� theorem. The imageof Gal(K/F ) is closed in the product since any product element � � Gal(K/F ) contains a pairof restrictions prohibited for � 2Gal(K/F ) by inclusion of Ei, a pair of inclusions which can berequired by the open set containing �. Thus Gal(K/F ) is compact, since it is a closed subset ofa compact set. It is Hausdor�, since two distinct elements contain a distinct restriction to someEi. It is also ``totally disconnected" since any open set can be partitioned by any Ei since allare discrete. In fact, these last three are general properties of the "pro�nite topology" whichapply here since we have simply adapted the pro�nite topology to exclude non-Galois normalextensions.Furthermore, the open subgroups Gal(K/Ei) form a system of neighborhoods of 1 (the identity)in Gal(K/F ).3.2 Generalized Galois CorrespondenceLemma 13. 3 Let H <G: Then, H =Gal(K/L) for some �eld L;K �L�F (namely L=KH) ,H is closed in G.Proof. 3 () ) Let H =Gal(K/L), let � 2H� in G; and let � 2L.If �(�) = �, then, � 2H so that H� =H implies that H is closed, hence done.Let K0�K be the splitting �eld of the minimal polynomial of � over F , so that K0/F is Galoisand [K0: K] < 1. Let G0 = Gal(K/K0), S0 = Gal(K0/F ), and �0 : G ! S0 = G/G0 be theprojection. Since S0 is discrete, �0H �S0 is closed. Hence �0�1�0H is closed in G by continuityof �0. Leave � �xed; then since � lies in the closure of H , and �0�1�0H is a closed setcontaining H (and hence its closure), � 2 �0�1�0H so that �(�)= �.
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( ( ) Let H < G be closed. H � Gal(K/KH) follows by de�nition 1. Then prove thecontrapositive of H �Gal(K/KH), the statement � � H) � � Gal(K/KH). H is closed)Hc 3� is open)9 open basis setN 3 � s. t. H \N = ;)9 �nite Galois extension K1/F with �1 :G!S1=Gal(K1/F ) such that �1� � �1H () � jK1 � H jK1). Then K1�1H �K1 is �xed by H so thatK1�1H � KH; and �i� � �iH = Gal(K1�1H/F ) ) K1�1H is not �xed by �1� by the 1-1correspondence of theorem 3, establishing the contrapositive.Note 14. The Krull topology results in this precise statement because the open basis setscorrespond to the elements only of �nite Galois extensions, so that H is closed implies thatevery element of the complement projects to a �nite Galois extension allowing the use of theinclusions of �nite Galois theory in (( ). The () ) implication would hold for any continuousprojection in a pro�nite topology. �Theorem 15. 3Generalized Theorem 3. Let K/F be an arbitrary Galois extension. Then thereis a one to one correspondence between �elds L with K �L�F and closed subgroups H <G.Proof. The maps de�ning the correspondence are exactly as in theorem 3, with the exceptionthat they refer only to closed subgroups, not arbitrary subgroups. Lemma 7 ensures that thiscorrespondence is an injection from sub�elds to subgroups; lemma 13 identi�es the image of thesubgroups as the set of all closed subgroups of G. �4 Extensions of a Finite Field.All �nite extensions of a �nite �eld Fq must have order in powers of q since each basis elementof the extension is cyclic of order q under scalar multiplication; non-prime-power orders are notallowed since divisors of zero would occur. Thus any �nite �eld extension is of the form Fpm/Fpn where njm. Then the order of Fq�; the group (Fq�f0g;� ), is q� 1, i. e. xq�1=1.In order to construct such a �eld extension, one can take Fpn = Fp[x]/in(x), where in(x) is anirreducible polynomial of degree n in Fp. There are pn elements of degree < n, the members ofFpn; no divisors of 0 exist since the polynomial is irreducible.The following recasting is more practical: take Fpn=Fp[jn], where jn satis�es in(jn) = 0. ThenFpn is the set of all polynomials in jn of degree less than n. Likewise no divisors of 0 exist.Then it remains to verify that such an in(x) can be found in all cases.Theorem 16. In any polynomial ring Fp[x], there exists an irreducible polynomial of degree n8n.Proof. As for any �eld, any polynomial over a �nite �eld can be split completely into linearfactors in some extension. Consider the polynomial f(x) = xpn�1� 1. Then f(x) = 0 8 x � 0 2Fpn, since the order of Fpn� = pn � 1. Thus f(jn) = 0, so if Fpn exists, there must be anirreducible polynomial of degree n among the factors of f , so we can show that this is requiredfor unique factorization in Fp. Then f(x) = x(p�1)(pn�1+pn�2+:::+1) � 1. As with Fpn; allirreducible factors of f(x) come from a �eld of order equal to some factor of the exponenent.Since (pn�1+ pn�2+ : : :+ 1) � pn0� 1 for any n0� n; the irreducible factors are of degree either1 or n. Since every element not containing jn is a root, their product, xp�1 � 1, divides f(x).Then f(x)/(xp�1� 1) = (xpn�p+ xpn�2p+1+ xpn�3p+2+ : : :+ 1) = xp(pn�1�1)+ xpn�1�2(p�1)+xpn�1�3(p�1) + : : : + 1 = Pi=0i=m xi(p�1), where m = pn�1 + pn�2 + : : : + p . Then for Fp, inwhich each element has order p � 1; each term is equal to 1, so the sum is equal to pn�1 +pn�2 + : : : + p + 1, which is not divisible by p. Thus there are no further linear factors in Fp,and the remaining factors must be irreducibles of degree n. �Note 17. This proof was attempted by induction on n, but the combinations of reducibles andirreducibles did not �t a convenient analytical description.The Galois group of such an extension consists strictly of powers of the Frobenius automorphism� pn: a! anp, for n � m = deg(Fqm/Fq) since the extenion has order deg(Fqm/Fq). This is theonly nontrivial mapping that �xes the elements of the original �eld. Hence the Galois group iscyclic of order m.
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5 Two proofs of isomorphism of Gal(Fpn /Fpn)to�p primeZp.This �nal section uses the Krull topology and theorem 15 to characterize the Galois group of a�nite �eld, proving its isomorphism to the product (over all primes p) of the ring of p-adicintegers.Theorem 18. Gal(Fq /Fq)'Qpprime Zp:Proof. (1)3(By inverse limits) For any n there is a unique �nite Galois extension K�qn, i. e. asubextension of K invariant under the action of the q Frobenius element of n'th degree ) Sn :=Gal(K�qn/K) is cyclic of order n and generated by � as above. Sn'Z/(n) via��� � mod n, i.e. where composition of � corresponds to addition on Z/(n). We thus know that Km � Kn ifand only if njm since Km must preserve the cyclic structure of Kn. In this case we have ahomomorphism �m;n : Z/(m) ! Z/(n) via � mod m � � mod n, so that the larger structuresimply reduces to the smaller structure; hence we have an inverse system of Galois groups. Nownote that when (m0; n0) = 1, then the �eld extension Km0[Kn0=Km0n0 since they �x their leastcommon multiple. Then Sm0n0 ' Sm0 � Sn0 since any of m0n0 distinct elements of Sm0n0corresponds to exactly one permutation of m0 and one of n0 in order to �x Sm0n0.We can use an inverse limit to describe the Galois group over powers of some p since each largergroup contains the smaller, so we simply want the combination of all of them out to in�nity.Thus we can describe the Galois group:G=Gal(K/Fq)=KfNg=SfQpprimep�g; (9)where the superscript at right denotes the set of all prime factorizations of the positive integers.The rightmost equality follows from the lemma 7. Then, by the two relations just given forprime powers and composite with coprime factors, and by isomorphism of an individual groupto Z/(p�): G=SfQp primep�g' Yp prime lim�Sp�' Yp prime lim�Z/(p�)= Ypprime Zp: (10)�Proof. (2)1 (by construction isomorphic to Krull topology) Retain the de�nitions of proof (1).First note that by theorem 15, G is the closure of B: = h�i in the Krull topology, i. e. thesmallest Galois group containing B, since here the algebraic closure is Galois. So we want toconstruct the closure of B with respect to the Krull topology.B �G is the set of all powers of �. Biject each element of h�i with Z by its power, and describethe Krull topology on Z. Any a; b 2 N are contained in the same open subset if they arecongruent mod n for some n; as then �ajFpn = �bjFpn (all �nite extensions are Galois) sinceGal(Fpn/Fp) is cyclic order n. Then each open basis set is de�ned by a pair �; n such that x�� mod n 8 x 2 N . Then given two open basis sets M; N , de�ned by the respective residues �m;�n; �m� � mod n)M �N i� njm (as in proof (1)). Thus a sequence of larger n divisible by allprevious n is a nested collection of neighborhoods whose intersection is the identity in B, andany open set is part of such a nested subset of the overall system of neighborhoods. These areneighborhoods of 0 in Z, i. e. the unrestricted �0; the identity, 1, on G as mentioned in thegeneral construction.Since we are dealing strictly with a system of neighborhoods, the closure of this set is equivalentto its completion under the norm of inclusion on these neighborhoods. So we take the usualclosure of such a topological group, where the set of all Cauchy sequences are included in thegroup. A Cauchy sequence (ai)i�1; ai2Z, satis�es the condition that for all n� 1, there exists Ns. t. i; j >N) ai� ajmod n. Call such a Cauchy sequence ``trivial" if 8n� 1 9 n such that ai�0 mod n, i. e. it behaves like the identity for n su�ciently large. The Cauchy sequences form acommutative group under addition of elements, and the trivial Cauchy sequences form asubgroup. Then de�ne Ẑ to be the quotient of the �rst group by the second. It has a ringstructure (by that of Z component-wise).
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By the Chinese Remainder Theorem, an element of such a Cauchy sequence in Z can satisfy a�nite number of arbitrary congruences (provided they reduce feasibly over powers of theindividual p), so the limit can achieve countably many congruences (a set of congruences over allp and n is countable). Then each coset in Ẑ is identi�ed with a set of congruences�pnmodulo each pn 2Z achieved in the limit i!1; the set of congruences is subject only to therequirement that reduction mod pn is again a homomorphism of �i (i. e. for n � m; �pn ��pm mod pm). Likewise, an element of the ring of p-adic integers Zp satis�es any set ofcongruences over pn allowing for reduction, since Zp is the set of all Pi=01 aipiai2 f0; : : :; p� 1g,so that ai= � pi , and Qp prime Zp can satisfy any set of such congruences over separate primes.Addition on Qpprime Zp is done component-wise, and maintains the exact analogy withcompsition (addition of powers) on the Galois group.Thus, by constructing the completion (closure) in the Krull Topology of the group generated bythe Frobenius automorphism, we have another proof thatYp prime Zp'Gal(Fq /Fq): (11) �Bibliography1 Milne, James. Fields and Galois Theory. August 31, 2003.www.jmilne.org/math2 Stepanov, Serguei. Arithmetic of Algebraic Curves. Moscow, 1994: Monographsin Contemporary Mathematics.3 Park, Jinhyun. A Personal Note on In�nite Galois Theory. 2004:www.math.uchicago.edu/~jinhyun/note/galois/galois/pdf.4 http://planetmath.org/encyclopedia (various entries)5 http://mathworld.wolfram.com (various entries)6 Halmos, Paul. Finite-Dimensional Vector Fields. New York, 1984: Springer-Verlag.7 Hellegouarch, Yves. Invitation to the Mathematics of Fermat-Wiles. Boston,2002: Academic Press.8 Stewart, Ian and Tall, David. Algebraic Number Theory and Fermat's LastTheorem. Natick, MA, 2002: A. K. Peters, Ltd.9 Stewart, Ian. Galois Theory: 3rd Edition. New York, 1989: Chapman and HallLtd.10 Artin, Michael. Algebra. 1991: Prentice Hall.Note 19. The most important thing that this paper taught me is that it makes a whole lot moresense to bite the bullet and learn math from textbooks and their exercises than to try to beedi�ed by groping for proofs yourself.
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