next up previous
Next: Arithmetic Modulo  Up: Lecture 5: Congruences Previous: Lecture 5: Congruences

Notation

Definition 1.1 (Congruence)   Let $ a,b\in\mathbb{Z}$ and $ n\in\mathbb{N}$. Then

$\displaystyle a\equiv b\pmod{n}
$

if $ n\mid a-b$.

That is, there is $ c\in\mathbb{Z}$ such that

$\displaystyle nc = a-b.
$

One way I think about it: $ a$ is congruent to $ b$ modulo $ n$, if we can get from $ b$ to $ a$ by adding multiples of $ n$.

Congruence modulo $ n$ is an equivalence relation. Let

$\displaystyle \mathbb{Z}/n\mathbb{Z}= \{$ the set of equivalence classes $\displaystyle \}
$

The set $ \mathbb{Z}/n\mathbb{Z}$ is a ring, the ``ring of integers modulo $ n$''. It is the quotient of the ring $ \mathbb{Z}$ by the ideal generated by $ n$.

Example 1.2  

$\displaystyle \mathbb{Z}/3\mathbb{Z}= \{ \{\ldots, -3, 0, 3, \ldots\},
\{\ldots, -2, 1, 4, \ldots\},
\{\ldots, -1, 2, 5, \ldots\}\}
= \{[0], [1], [2]\}
$

where we let $ [a]$ denote the equivalence class of $ a$.



William A Stein 2001-09-20