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A polynomial relation f(x, y) = 0 in two variables defines a curve C0. If the coefficients

of the polynomial are rational numbers then one can ask for solutions of the equation

f(x, y) = 0 with x, y ∈ Q, in other words for rational points on the curve. The set of

all such points is denoted C0(Q). If we consider a non-singular projective model C of the

curve then topologically C is classified by its genus, and we call this the genus of C0 also.

Note that C0(Q) and C(Q) are either both finite or both infinite. Mordell conjectured,

and in 1983 Faltings proved, the following deep result

Theorem [F1]. If the genus of C0 is greater than or equal to two, then C0(Q) is finite.

As yet the proof is not effective so that one does not possess an algorithm for finding

the rational points. (There is an effective bound on the number of solutions but that

does not help much with finding them.) The case of genus zero curves is much easier and

was treated in detail by Hilbert and Hurwitz [HH]. They explicitly reduce to the cases

of linear and quadratic equations. The former case is easy and the latter is resolved by

the criterion of Legendre. In particular for a non-singular projective model C we find

that C(Q) is non-empty if and only if C has p-adic points for all primes p, and this in

turn is determined by a finite number of congruences. If C(Q) is non-empty then C is

parametrized by rational functions and there are infinitely many rational points. The

most elusive case is that of genus 1. There may or may not be rational solutions and no

method is known for determining which is the case for any given curve. Moreover when

there are rational solutions there may or may not be infinitely many. If a non-singular

projective model C has a rational point then C(Q) has a natural structure as an abelian



group with this point as the identity element. In this case we call C an elliptic curve over

Q. (For a history of the development of this idea see [S]). In 1922 Mordell ([M]) proved

that this group is finitely generated, thus fulfilling an implicit assumption of Poincaré.

Theorem. If C is an elliptic curve over Q then

C(Q) � Zr ⊕ C(Q)tors

for some integer r ≥ 0, where C(Q)tors is a finite abelian group.

The integer r is called the rank of C. It is zero if and only if C(Q) is finite. We can

find an affine model for an elliptic curve over Q in Weierstrass form

C: y2 = x3 + ax + b

with a, b ∈ Z. We let ∆ denote the discriminant of the cubic and set

Np := #{solutions of y2 ≡ x3 + ax + b mod p}
ap := p − Np.

Then we can define the incomplete L-series of C (incomplete because we omit the Euler

factors for primes p|2∆) by

L(C, s) :=
∏

p�2∆

(1 − app
−s + p1−2s)−1.

We view this as a function of the complex variable s and this Euler product is then known

to converge for Re(s) > 3/2. A conjecture going back to Hasse (see the commentary

on 1952(d) in [We1]) predicted that L(C, s) should have a holomorphic continuation as a

function of s to the whole complex plane. This has now been proved ([W], [TW], [BCDT]).

We can now state the millenium prize problem:

Conjecture (Birch and Swinnerton-Dyer). The Taylor expansion of L(C, s) at s = 1 has

the form

L(C, s) = c(s − 1)r + higher order terms

with c 
= 0 and r = rank(C(Q)).

In particular this conjecture asserts that L(C, 1) = 0 ⇔ C(Q) is infinite.
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Remarks. 1. There is a refined version of this conjecture. In this version one has to define

Euler factors at primes p|2∆ to obtain the completed L-series, L∗(C, s). The conjecture

then predicts that L∗(C, s) ∼ c∗(s − 1)r with

c∗ = |XC |R∞w∞
∏

p|2∆
wp/|C(Q)tors|2.

Here |XC | is the order of the Tate-Shafarevich group of the elliptic curve C, a group

which is not known in general to be finite although it is conjectured to be so. It counts the

number of equivalence classes of homogeneous spaces of C which have points in all local

fields. The term R∞ is an r × r determinant whose matrix entries are given by a height

pairing applied to a system of generators of C(Q)/C(Q)tors. The wp’s are elementary local

factors and w∞ is a simple multiple of the real period of C. For a precise definition of these

factors see [T1] or [T3]. It is hoped that a proof of the conjecture would also yield a proof

of the finiteness of XC . 2. The conjecture can also be stated over any number field as

well as for abelian varieties, see [T1]. Since the original conjecture was stated much more

elaborate conjectures concerning special values of L-functions have appeared, due to Tate,

Lichtenbaum, Deligne, Bloch, Beilinson and others, see [T2], [Bl] and [Be]. In particular

these relate the ranks of groups of algebraic cycles to the order of vanishing (or the order

of poles) of suitable L-functions. 3. There is an analogous conjecture for elliptic curves

over function fields. It has been proved in this case by M. Artin and J. Tate [T1] that the

L-series has a zero of order at least r, but the conjecture itself remains unproved. In the

function field case it is now known to be equivalent to the finiteness of the Tate-Shafarevich

group, [T1], [Mi] X corollary 9.7. 4. A proof of the conjecture in the stronger form would

give an effective means of finding generators for the group of rational points. Actually one

only needs the integrality of the term XC in the expression for L∗(C, s) above, without

any interpretation as the order of the Tate-Shafarevich group. This was shown by Manin

[Ma] subject to the condition that the elliptic curves were modular, a property which is

now known for all elliptic curves by [W], [TW], [BCDT]. (A modular elliptic curve is one

which occurs as a factor of the Jacobian of a modular curve.)

Early History Problems on curves of genus 1 feature prominently in Diophantus’ Arith-
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metica. It is easy to see that a straight line meets an elliptic curve in three points (counting

multiplicity) so that if two of the points are rational then so is the third.1 In particular

if a tangent is taken to a rational point then it meets the curve again in a rational point.

Diophantus implicitly uses this method to obtain a second solution from a first. However

he does not iterate this process and it is Fermat who first realizes that one can sometimes

obtain infinitely many solutions in this way. Fermat also introduced a method of ‘descent’

which sometimes permits one to show that the number of solutions is finite or even zero.

One very old problem concerned with rational points on elliptic curves is the congruent

number problem. One way of stating it is to ask which rational integers can occur as the

areas of right-angled triangles with rational length sides. Such integers are called congru-

ent numbers. For example, Fibonacci was challenged in the court of Frederic II with the

problem for n = 5 and he succeeded in finding such a triangle. He claimed moreover that

there was no such triangle for n = 1 but the proof was fallacious and the first correct proof

was given by Fermat. The problem dates back to Arab manuscripts of the 10th century

(for the history see [We2] chapter 1, §VII and [Di] chapter XVI). It is closely related to

the problem of determining the rational points on the curve Cn: y2 = x3 − n2x. Indeed

Cn(Q) is infinite ⇐⇒ n is a congruent number

Assuming the Birch and Swinnerton-Dyer conjecture (or even the weaker statement that

Cn(Q) is infinite ⇔ L(Cn, 1) = 0) one can show that any n ≡ 5, 6, 7 mod 8 is a congruent

number and moreover Tunnell has shown, again assuming the conjecture, that for n odd

and square-free

n is a congruent number ⇐⇒
#{x,y, z ∈ Z: 2x2 + y2 + 8z2 = n}

= 2 × #{x, y, z ∈ Z: 2x2 + y2 + 32z2 = n},
with a similar criterion if n is even ([Tu]). Tunnell proved the implication left to right

unconditionally with the help of the main theorem of [CW] described below.

Recent History It was the 1901 paper of Poincaré [P] which started the modern interest in

the theory of rational points on curves and which first raised questions about the minimal

1 This was apparently first explicitly pointed out by Newton.
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number of generators of C(Q). The conjecture itself was first stated in the form we have

given in the early 1960’s (see [BS]). In the intervening years the theory of L-functions of

elliptic curves (and other varieties) had been developed by a number of authors but the

conjecture was the first link between the L-function and the structure of C(Q). It was

found experimentally using one of the early computers EDSAC at Cambridge. The first

general result proved was for elliptic curves with complex multiplication. (The curves with

complex multiplication fall into a finite number of families including {y2 = x3 − Dx} and

{y2 = x3 − k} for varying D, k 
= 0.) This theorem was proved in 1976 and is due to

Coates and Wiles [CW]. It states that if C is a curve with complex multiplication and

L(C, 1) 
= 0 then C(Q) is finite. In 1983 Gross and Zagier showed that if C is a modular

elliptic curve and L(C, 1) = 0 but L′(C, 1) 
= 0, then an earlier construction of Heegner

actually gives a rational point of infinite order. Using new ideas together with this result,

Kolyvagin showed in 1990 that for modular elliptic curves, if L(C, 1) 
= 0 then r = 0 and if

L(C, 1) = 0 but L′(C, 1) 
= 0 then r = 1. In the former case Kolyvagin needed an analytic

hypothesis which was confirmed soon afterwards; see [Da] for the history of this and for

further references. Finally as noted in remark 4 above it is now known that all elliptic

curves over Q are modular so that we now have the following result:

Theorem. If L(C, s) ∼ c(s − 1)m with c 
= 0 and m = 0 or 1 then the conjecture holds.

In the cases where m = 0 or 1 some more precise results on c (which of course depends on

the curve) are known by work of Rubin and Kolyvagin.

Rational Points on Higher Dimensional Varieties We began by discussing the dio-

phantine properties of curves, and we have seen that the problem of giving a criterion for

whether C(Q) is finite or not is an issue only for curves of genus 1. Moreover according to

the conjecture above, in the case of genus 1, C(Q) is finite if and only if L(C, 1) 
= 0. In

higher dimensions if V is an algebraic variety, it is conjectured (see [L]) that if we remove

from V (the closure of) all subvarieties which are images of P1 or of abelian varieties then

the remaining open variety W should have the property that W (Q) is finite. This has

been proved in the case where V is itself a subvariety of an abelian variety by Faltings
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[F2]. This suggests that to find infinitely many points on V one should look for rational

curves or abelian varieties in V . In the latter case we can hope to use methods related to

the Birch and Swinnerton-Dyer conjecture to find rational points on the abelian variety.

As an example of this consider the conjecture of Euler from 1769 that x4 + y4 + z4 = t4

has no non-trivial solutions. By finding a curve of genus 1 on the surface and a point of

infinite order on this curve, Elkies [E] found the solution,

26824404 + 153656394 + 187967604 = 206156734

His argument shows that there are infinitely many solutions to Euler’s equation. In con-

clusion, although there has been some success in the last fifty years in limiting the number

of rational points on varieties, there are still almost no methods for finding such points.

It is to be hoped that a proof of the Birch and Swinnerton-Dyer conjecture will give some

insight concerning this general problem.
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