next up previous
Next: Examples Up: Lecture 13: Quadratic Reciprocity Previous: Euler's Conjecture

The Quadratic Reciprocity Law

With the lemma in hand, it is straightforward to deduce the quadratic reciprocity law.

Theorem 3.1 (Gauss)   Suppose that $ p$ and $ q$ are distinct odd primes. Then

$\displaystyle \left(\frac{p}{q}\right)\cdot \left(\frac{q}{p}\right) = (-1)^{\frac{p-1}{2}\cdot \frac{q-1}{2}}.$

Proof. First suppose that $ p\equiv q\pmod{4}$. By swapping $ p$ and $ q$ if necessary, we may assume that $ p>q$, and write $ p-q=4a$. Since $ p=4a+q$,

$\displaystyle \left(\frac{p}{q}\right) = \left(\frac{4a+q}{q}\right) = \left(\frac{4a}{q}\right) = \left(\frac{a}{q}\right),$

and

$\displaystyle \left(\frac{q}{p}\right) = \left(\frac{p-4a}{p}\right) = \left(\frac{-4a}{p}\right) = \left(\frac{-1}{p}\right)\cdot \left(\frac{a}{p}\right).$

Proposition 2.2 implies that $ \left(\frac{a}{q}\right) = \left(\frac{a}{p}\right)$, since $ p\equiv q\pmod{4a}$. Thus

$\displaystyle \left(\frac{p}{q}\right)\cdot\left(\frac{q}{p}\right) = \left(\frac{-1}{p}\right) = (-1)^{\frac{p-1}{2}}
= (-1)^{\frac{p-1}{2}\cdot \frac{q-1}{2}},$

where the last equality is because $ \frac{p-1}{2}$ is even if and only if $ \frac{q-1}{2}$ is even.

Next suppose that $ p\not\equiv q\pmod{4}$, so $ p\equiv -q\pmod{4}$. Write $ p+q=4a$. We have

$\displaystyle \left(\frac{p}{q}\right) = \left(\frac{4a-q}{q}\right) = \left(\frac{a}{q}\right),$    and $\displaystyle \quad
\left(\frac{q}{p}\right) = \left(\frac{4a-p}{p}\right) = \left(\frac{a}{p}\right).$

Since $ p\equiv -q\pmod{4a}$, Proposition 2.2 implies that $ \left(\frac{p}{q}\right)=\left(\frac{q}{p}\right)$. Since $ (-1)^{\frac{p-1}{2}\cdot \frac{q-1}{2}}=1$, the proof is complete. $ \qedsymbol$



Subsections

William A Stein 2001-10-12