next up previous
Next: About this document ... Up: Lecture 12: Quadratic Reciprocity Previous: The Quadratic Reciprocity Law

A Lemma of Gauss

The proof we will give of Theorem 2.1 was first discovered by Gauss, though not when he was $ 19$. This proof is given in many elementary number theory texts (including Davenport). It depends on the following lemma of Gauss:

Lemma 3.1   Let $ p$ be an odd prime and let $ a$ be an integer $ \not\equiv 0\pmod{p}$. Form the numbers

$\displaystyle a,\, 2a,\, 3a,\, \ldots,\, \frac{p-1}{2} a
$

and reduce them modulo $ p$ to lie in the interval $ (-\frac{p}{2},\,\, \frac{p}{2})$. Let $ \nu$ be the number of negative numbers in the resulting set. Then

$\displaystyle \left(\frac{a}{p}\right) = (-1)^{\nu}.
$

Proof. In defining $ \nu$, we expressed each number in

$\displaystyle S = \left\{a, 2a, \ldots, \frac{p-1}{2} a\right\}
$

as congruent to a number in the set

$\displaystyle \left\{ 1, -1, 2, -2, \ldots, \frac{p-1}{2}, -\frac{p-1}{2}\right\}.
$

No number $ 1, 2, \ldots \frac{p-1}{2}$ appears more than once, with either choice of sign, because if it did then either two elements of $ S$ are congruent modulo $ p$ or 0 is the sum of two elements of $ S$, and both events are impossible. Thus the resulting set must be of the form

$\displaystyle T = \left\{\varepsilon _1\cdot 1, \varepsilon _2 \cdot 2, \ldots,
\varepsilon _{(p-1)/2}\cdot \frac{p-1}{2} \right\},$

where each $ \varepsilon _i$ is either $ +1$ or $ -1$. Multiplying together the elements of $ S$ and of $ T$, we see that

$\displaystyle (1a) \cdot (2a)\cdot(3a)\cdot \cdots \cdot \left(\frac{p-1}{2} a\...
...ot 2) \cdots
\left(\varepsilon _{(p-1)/2} \cdot \frac{p-1}{2}\right)\pmod{p},
$

so

$\displaystyle a^{(p-1)/2} \equiv \varepsilon _1\cdot \varepsilon _2\cdot \cdots \cdot \varepsilon _{(p-1)/2}\pmod{p}.$

The lemma then follows from Proposition 1.1. $ \qedsymbol$


next up previous
Next: About this document ... Up: Lecture 12: Quadratic Reciprocity Previous: The Quadratic Reciprocity Law
William A Stein 2001-10-06