Suppose with , say. Then
If , then .
If , then .
If , then .
Thus . We find that and .
tex2html_preform ? n=23360947609 %1 = 23360947609 ? sqrt(n) %2 = 152842.8853725288712694157797 ? x=%2 %3 = 152842.8853725288712694157797 ? floor(x+1) %4 = 152843 ? t=floor(x+1) %5 = 152843 ? t^2-n %6 = 35040 ? sqrt(t^2-n) %7 = 187.1897433087614445431082470 ? t++ %8 = 152844 ? sqrt(t^2-n) %9 = 583.7182539547654063924081356 ? t++ %10 = 152845 ? sqrt(t^2-n) %11 = 804.0000000000000000000000000 ? s=804 %12 = 804 ? p=t+s %13 = 153649 ? q=t-s %14 = 152041 ? p*q %15 = 23360947609 ? n %16 = 23360947609 ? factor(n) %17 = [152041 1] [153649 1]
Here is a bigger example in PARI:
? q=nextprime(random(10^50)) %20 = 78177096444230804504075122792410749354743712880803 ? p=nextprime(q+1) \\ a nearby prime %21 = 78177096444230804504075122792410749354743712880899 ? n=p*q %22 = 6111658408450564697085634201845976850509908580949986889525704... ...259650342157399279163289651693722481897 ? t=floor(sqrt(n))+1 *** precision loss in truncation ? \p150 \\ set precision of floating-point computations. realprecision = 154 significant digits (150 digits displayed) ? t=floor(sqrt(n))+1 %29 = 78177096444230804504075122792410749354743712880851 ? sqrt(t^2-n) %30 = 48.000000000000000000000000000000000000000000000000000000.... ? s=48 %31 = 48 ? t + s \\ p %33 = 78177096444230804504075122792410749354743712880899 ? t - s \\ q %35 = 78177096444230804504075122792410749354743712880803