A. Student

Math 124 Problem Set 7

1. **D=-155** There are four elements: [[1, 1, 39], [3, -1, 13], [3, 1, 13], [5, 5, 9]].

By the structure theorem, C_{-155} is isomorphic to either $C_2 \times C_2$ or C_4 . It is easy to verify that [1, 1, 39] is the identity. From this we find that [3, -1, 13] has order 4, so it must be that $C_{-155} \simeq C_4$.

D=-231 There are twelve elements: [1, 1, 58], [2, -1, 29], [2, 1, 29], [3, 3, 20], [4, -3, 15], [4, 3, 15],

[5, -3, 12], [5, 3, 12], [6, -3, 10], [6, 3, 10], [7, 7, 10], [8, 5, 8]. Therefore $\mathcal{C}_{-231} \simeq \mathcal{C}_{12}$ or $\mathcal{C}_2 \times \mathcal{C}_6$. The identity is [1, 1, 58]. Both [2, -1, 29] and [2, 1, 29] have order 6, which is impossible in \mathcal{C}_{12} , so $\mathcal{C}_{-231} \simeq \mathcal{C}_2 \times \mathcal{C}_6$.

D=-660 There are eight elements: [1,0,165], [10,10,19], [11,0,15], [13,4,13], [2,2,83], [3,0,55], [5,0,33], [6,6,29]. The first element is the identity, and all others have order 2. Therefore $C_{-660} \simeq C_2 \times C_2 \times C_2$.

D=-12104 There are forty-eight elements: (listed in an email from Professor Stein). By the structure theorem, $C_D \simeq C_{48}$, $C_4 \times C_{12}$, or $C_2 \times C_{24}$. The identity element is [1,0,3026], and using it we find two elements of order four: [45,-26,71] and [50,-36,67], eliminating everything but $C_4 \times C_{12}$.

D=-10015 There are fifty-four elements (listed in an email from Professor Stein). Therefore $C_D \simeq C_3 \times C_{18}$ or C_{54} . The identity is [1, 1, 2504]; from this we find two elements with order 9: [10, -5, 251] and [10, 5, 251]. Therefore the group cannot be C_{54} , so $C_D \simeq C_3 \times C_{18}$.

- 2. The three graphs are on the next page, plotted in MAPLE.
- **3.** Differentiating implicitly, the slope of the tangent at (x,y) is $\frac{3x^2}{2y}$. At (3,5), the slope is $\frac{27}{10}$, and the tangent line has equation $y = \frac{27x-31}{10}$. Substituting into the relation $y^2 x^3 = -2$, we have $(\frac{27x-31}{10})^2 x^3 = -2$, which simplifies to the polynomial

$$100x^3 - 729x^2 + 1674x - 1161 = 0.$$

This polynomial has a double root at x = 3, so it factors into $(x - 3)^2 (100x - 129)$, giving a rational root with x = 1.29. Therefore (1.29, .383) is a rational solution to the original equation.