Homework 6: Binary Quadratic Forms Due Wednesday, November 7

William Stein

Math 124 HARVARD UNIVERSITY Fall 2001

There are 9 problems. Work in groups and use PARI as much as you like.

1. (3 points) Which of the following numbers is a sum of two squares? Express those that are as a sum of two squares.

-389, 12345, 91210, 729, 1729, 68252

- 2. (i) (4 points) Write a PARI program that takes a positive integer n as input and outputs a sequence [x,y,z,w] of integers such that $x^2 + y^2 + z^2 + w^2 = n$. (Hint: Your program does not have to be efficient.)
 - (ii) (2 point) Write 2001 as a sum of three squares.
- 3. (3 points) Find a positive integer that has a least three different representations as the sum of two squares, disregarding signs and the order of the summands.
- 4. (5 points) Show that a natural number n is the sum of two integer squares if and only if it is the sum of two rational squares.
- 5. (6 points) Mimic the proof of the main theorem of Lecture 21 to show that an odd prime p is of the form 8m+1 or 8m+3 if and only if it can be written as $p=x^2+2y^2$ for some choice of integers x and y. (Hint: Use the formula for the quadratic residue symbol $\left(\frac{-2}{p}\right)$ from Lecture 13.)
- 6. (4 points) A triangular number is a number that is the sum of the first m integers for some positive integer m. If n is a triangular number, show that all three of the integers $8n^2$, $8n^2 + 1$, and $8n^2 + 2$ can be written as a sum of two squares.
- 7. (3 points) Prove that of any four consecutive integers, at least one is not representable as a sum of two squares.
- 8. (4 points) Show that $13x^2 + 36xy + 25y^2$ and $58x^2 + 82xy + 29y^2$ are each equivalent to the form $x^2 + y^2$, then find integers x and y such that $13x^2 + 36xy + 25y^2 = 389$.
- 9. (4 points) What are the discriminants of the forms $199x^2 162xy + 33y^2$ and $35x^2 96xy + 66y^2$? Are these forms equivalent?