Homework 5: Continued Fractions Due Wednesday, October 31 (Halloween)

William Stein

Math 124 HARVARD UNIVERSITY Fall 2001

There are 10 problems. Feel free to use a computer on any of them.

- 1. (3 points) Draw some sort of diagram that illustrates the partial convergents of the following continued fractions:
 - (i) [13, 1, 8, 3]
 - (ii) [1, 1, 1, 1, 1, 1, 1, 1]
 - (iii) [1, 2, 3, 4, 5, 6, 7, 8]
- 2. (5 points) If $c_n = p_n/q_n$ is the *n*th convergent of the continued fraction $[a_0, a_1, \ldots, a_n]$ and $a_0 > 0$, show that

$$[a_n, a_{n-1}, \dots, a_1, a_0] = \frac{p_n}{p_{n-1}}$$

and

$$[a_n, a_{n-1}, \dots, a_2, a_1] = \frac{q_n}{q_{n-1}}.$$

(Hint: In the first case, notice that $\frac{p_n}{p_{n-1}} = a_n + \frac{p_{n-2}}{p_{n-1}} = a_n + \frac{1}{\frac{p_n-1}{p_{n-2}}}$.)

- 3. (4 points) There is a function $j(\tau)$, denoted by ellj in PARI, which takes as input a complex number τ with positive imaginary part, and returns a complex number called the "j-invariant of the associated elliptic curve". Suppose that τ is approximately -0.5 + 0.3281996289i and that you know that $j=j(\tau)$ is a rational number. Use continued fractions and PARI to compute a reasonable guess for the rational number $j=\text{ellj}(\tau)$. (Hint: In PARI $\sqrt{-1}$ is represented by I.)
- 4. (3 points) Evaluate each of the following infinite continued fractions:
 - (i) $[\overline{2,3}]$
 - (ii) $[2, \overline{1, 2, 1}]$
 - (iii) $[0, \overline{1, 2, 3}]$
- 5. (3 points) Determine the infinite continued fraction of each of the following numbers:
 - (i) $\sqrt{5}$
 - (ii) $\frac{1+\sqrt{13}}{2}$
 - (iii) $\frac{5+\sqrt{37}}{4}$

- 6. (i) (4 points) For any positive integer n, prove that $\sqrt{n^2 + 1} = [n, \overline{2n}]$.
 - (ii) (2 points) Find a convergent to $\sqrt{5}$ that approximates $\sqrt{5}$ to within four decimal places.
- 7. (4 points) A famous theorem of Hurwitz (1891) says that for any irrational number x, there exists infinitely many rational numbers a/b such that

$$\left| x - \frac{a}{b} \right| < \frac{1}{\sqrt{5}b^2}.$$

Taking $x = \pi$, obtain three rational numbers that satisfy this inequality.

8. (3 points) The continued fraction expansion of e is

$$[2, 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, 1, 1, \ldots].$$

It is a theorem that the obvious pattern continues indefinitely. Do you think that the continued fraction expansion of e^2 also exhibits a nice pattern? If so, what do you think it is?

- 9. (i) (4 points) Show that there are infinitely many even integers n with the property that both n+1 and $\frac{n}{2}+1$ are perfect squares.
 - (ii) (3 points) Exhibit two such integers that are greater than 389.
- 10. (7 points) A primitive Pythagorean triple is a triple x, y, z of integers such that $x^2 + y^2 = z^2$. Prove that there exists infinitely many primitive Pythagorean triples x, y, z in which x and y are consecutive integers.