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Preface

This is a book about Sage http://sagemath.org, which is a large free open source
software project that I started in 2005, whose “mission statement” is to create a viable
free open source alternative to the commercial programs Magma, Maple, Mathematica,
and Matlab. I have given many talks, tutorials, and workshops on Sage, and this book
records what I have personally found to be the most important key ideas that are
needed to make effective use of Sage. My intention is that you read the whole book
cover-to-cover, and have thus kept the book intentionally short.

I assume that you have some previous computer programming experience, but not
necessarily in Python. Though I’ll make reference to many mathematical topics when
illustrating how to use Sage, do not worry if some are not familiar to you.

This book is licensed under the Creative Commons Attribution 3.0 license1, so it
will always be freely available in many formats.

1See http://creativecommons.org/licenses/by/3.0/.
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Chapter 1

Introduction to Sage

1.1 Motivation

I started the Sage project in early 2005 in order to create a viable free open source
mathematical software package that I could use for my research. I was frustrated with
not being allowed to easily change or understand the internals of closed source systems1

and I had a deep concern that my students and colleagues could not easily use the
commercially distributed software that I had spent many years developing (and con-
tributing). I started Sage as a new project instead of switching to another system, since
the capabilities of any available software for number theory at the time were far behind
many key features of commercial systems.2 Several hundred people have since become
involved in Sage development, and the goals have broadened substantially.

Sage uses a mainstream programming language, unlike all popular mathematics
software, including Maple, Mathematica, and Matlab, which each use their own special-
purpose languages written just for mathematics. One works with Sage using Python,
which is one of the world’s most popular general purpose scripting languages. By using
Python, one can use almost anything ever written in Python directly in Sage. And there
is much useful Python code out there that addresses a wide range of application areas.

Instead of writing many of the core libraries from scratch like most math software
systems have done in Sage I assembled together the best open source software out there,
and built on it3. Also, the complete system is easily buildable from source on a range
of computers. There are challenges: some of the upstream libraries can be difficult to
understand, are written in a range of languages, and have different conventions than
Sage. Thus it is important to strongly encouraging good relations with the projects
that create many of the components of Sage.

A wide and vibrant community of developers and users have become involved with
Sage. Due to the broad interests of this large community of developers, Sage has grown
into a project with the following specific goal:

Mission Statement: Provide a viable free open source alternative to
Magma, Maple, Mathematica, and Matlab.

1For me, this was a powerful niche program called “Magma”.
2For example, Magma’s tools for linear algebra over the rational numbers and finite fields were vastly

superior to anything available anywhere else.
3Sage includes over 500,000 lines of code that does not come from third party projects.
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1.2 What is Sage?

Sage is a free open-source mathematics software system licensed under the GNU Public
License (GPL). It combines the power of about 100 open-source packages with a large
amount of new code to provide a free open source platform for mathematical computa-
tion. Sage has many notable features.

• Sage is free, due mainly to the volunteer effort of hundreds of people and gener-
ous funding from the National Science Foundation, private donations, and other
organizations such as Google and Microsoft. There are no license codes or copy
protection. Sage is also open source, so there are absolutely no secret or propri-
etary algorithms anywhere in Sage. There is nothing that you are not allowed to
see or change.

• Sage uses the mainstream programming language Python. Learning Sage will
make you proficient in this popular, widely used, and well supported free pro-
gramming language, which you will likely also use for other non-mathematics
projects. Moreover, Sage features the Cython compiler, which allows one to com-
bine Python, C/C++/Fortran libraries, and native machine types for potentially
huge speedups.

• Sage is uniquely able to combine functionality from dozens of other mathematical
software programs and programming languages via smart psuedoterminal inter-
faces. You can combine Lisp, Mathematica, and C code to attack a single problem.

• Sage has both a sophisticated multiuser web-based graphical user interface and a
powerful command line interface. Sage can also be made to work with any other
Python interactive development environment (IDE).

• Sage may have the widest range of mathematical capabilities of any single math-
ematical software system available. Sage and its components are developed by
an active and enthusiastic worldwide community of people from many areas of
mathematics, science, and engineering.

• Modifications to Sage are publicly peer reviewed, and what goes into Sage is
decided via community discussions; no matter who you are, if you have a brilliant
idea, the energy, and can clearly argue that something should go into Sage, it
probably will. Known bugs in Sage, and all discussions about them are available
for all to see.

Sage is nothing like Magma, Maple, Mathematica, and Matlab, in which details of
their implementations of algorithms is secret, their list of bugs is concealed, how they
decided what got included in each release is under wraps, their custom programming
language locks you in, and you must fight with license codes, copy protection and
intentionally crippled web interfaces.

1.3 “This unique American idea of the entrepreneurial
company.”

The Mathematica documentation has an argument for why looking at the internals of
mathematical software is not necessary.
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“Particularly in more advanced applications of Mathematica, it may some-
times seem worthwhile to try to analyze internal algorithms in order to
predict which way of doing a given computation will be the most efficient.
And there are indeed occasionally major improvements that you will be able
to make in specific computations as a result of such analyses.

But most often the analyses will not be worthwhile. For the internals of
Mathematica are quite complicated, and even given a basic description of
the algorithm used for a particular purpose, it is usually extremely difficult
to reach a reliable conclusion about how the detailed implementation of this
algorithm will actually behave in particular circumstances.”

– http://reference.wolfram.com/mathematica/tutorial/WhyYouDoNotUsuallyNeedToKnowAboutInternals.html

Wolfram, who founded the company that sells Mathematica, admits that the math-
ematical community hates some of what he has done, arguing that a closed source
commercial model is the only approach that can possibly work.

“There’s another thing, quite honestly, that that community has a hard time
with. They sort of hate one aspect of what I have done, which is to take
intellectual developments and make a company out of them and sell things
to people.

My own view of that, which has hardened over the years, is, my god, that’s
the right thing to do. If you look at what’s happened with TeX, for exam-
ple, which went in the other direction... well, Mathematica could not have
been brought to where it is today if it had not been done as a commercial
effort. The amount of money that has to be spent to do all the details of
development, you just can’t support that in any other way than this unique
American idea of the entrepreneurial company.”

– Stephen Wolfram, 1993, Doctor Dobbs Journal Interview

For the last 20 years, Matlab, Mathematica, and the other commercial systems have
dominanted with on the order of a hundred million dollars a year in revenue. If the Sage
project succeeds at its goals (still a big if), it will have proved that Wolfram is wrong
and radically change the landscape of computational mathematics.

1.4 Getting Started

The easiest way to get started with Sage right now is to visit http://480.sagenb.org
and login using OpenID by clicking one of the buttons at the bottom right. This should
work with nearly any operating system and browser combination4. Using Sage via the
above webpage is fine if you just want to use Sage via the notebook, e.g., for learning
Python (Chapter 2) and Cython (Chapter 3).

There are some situations where you will instead want to install Sage on your own
computer, or get an account on a command-line server on which Sage is installed:

1. You want to use the Sage command line interface.

2. You want to use the interactive command line profiler and debugger, which haven’t
been properly ported to the notebook yet (see Chapter ??).

4I recommend that you avoid using Internet Explorer if at all possible.
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3. You want to modify Sage and contribute back new code (see Chapter ??).

4. You want to interface nonfree software with Sage (see Chapter 6). It would be
illegal for me to allow just anybody to run Maple/Mathematica/etc. code at
http://480.sagenb.org.

5. You do not have access to the Internet.

Remark 1.4.1. Eliminating all but the last reason above are current goals of the Sage
project. A command line interface should be added to the notebook, and it should
support the profiler and debugger. It should be possible to edit all files in the source
code of Sage, use revision control systems, etc., completely via the web. Even the legal
issue involving nonfree software could be resolved by hooking into our University’s au-
thentication system, just as you authenticate for off-campus access to library resources.

1.5 A Tour

Sage uses the basic user-interface principle of “question and answer” found in many other
mathematical software systems. You enter input written in a well-defined language and,

after pressing the return key in the command line interface or pressing shift+return
in the notebook interface, Sage evaluates your input and returns the result.

A traditional test that Sage is working is to compute 2+2:

sage: 2 + 2

4

We factor a whole number.

sage: factor (2012)

2^2 * 503

Thus 2012 = 2× 2× 503. Sage can also factor negative numbers and rational numbers:

sage: factor ( -2012/2015)

-1 * 2^2 * 5^-1 * 13^-1 * 31^-1 * 503

The language that Sage uses is almost the same as the Python programming lan-
guage. One difference between Sage and Python is that ^ means exponentiation in
Sage but exclusive or in Python. Another difference is that integer division results in a
rational number in Sage, but is floor division in Python.

sage: 2^3

8

sage: 2012/6

1006/3

We can also factor symbolic expressions using Sage. To introduce a symbolic vari-
able, use the var command.

sage: var(’x,y’)

(x, y)

sage: F = factor(x^2 - 4*sin(y)^2); F
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(x - 2*sin(y))*(x + 2*sin(y))

If you want to put any result in a LATEX document5, use the latex command:

sage: latex(F)

{\left(x - 2 \, \sin\left(y\right )\right )} {\left(x + 2 \,

\sin\left(y\right)\ right)}

which looks like this:
(x− 2 sin (y))(x+ 2 sin (y))

Sage knows Calculus:

sage: integrate(e^x * sin(x), x)

1/2*( sin(x) - cos(x))*e^x

sage: derivative (1/2*( sin(x) - cos(x))*e^x). expand ()

e^x*sin(x)

Sage can plot functions:

sage: g = plot(sin(x) + (1-x^2), (x, 0, 2)); g

0.5 1 1.5 2

-2

-1.5

-1

-0.5

0.5

1

To include this plot in a document, save it as a PDF file:

sage: g.save(’plot1.pdf’)

We numerically find a root of sin(x) + (1− x2) between 0 and 2, as follows:

sage: find_root(sin(x) + (1-x^2), 0, 2)

1.4096240040025754

You can use some other programming languages directly from Sage, such as Lisp:

sage: s = "(defun factorial(n)"

sage: s += " (if (= n 1) 1 (* n (factorial (- n 1)))))"

sage: lisp(s)

FACTORIAL

sage: lisp(’(factorial 10)’)

3628800

5LATEX is the dominant tool for producing professional quality mathematical papers and books; it
is free and open source and you should learn it.
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Or use Mathematica (this won’t work if you don’t have Mathematica):

sage: mathematica(’Integrate[Sin[x^2],x]’) # optional - Mathematica

Sqrt[Pi/2]* FresnelS[Sqrt [2/Pi]*x]

Or use Magma, over the web (this should work as long as you have an Internet
connection, since it just uses http://magma.maths.usyd.edu.au/calc/):

sage: magma_free("Factorisation (2012)")

[ <2, 2>, <503, 1> ]
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Part I

Programming Sage

11



Chapter 2

Python

Sage uses the Python programming language, which is relatively easy to learn and
fun to use. This chapter is a quick Sage-oriented introduction to Python, which you
should supplement with a book. Fortunately, the two best books on Python are free:
The Python Tutorial (see http://docs.python.org/) and Dive Into Python (see http:
//www.diveintopython.net/).

2.1 What is Python?

Python is a popular free open source language with no particular company pushing it.
Many big companies such as Google use Python, and support its development. From
http://python.org:

“Python is a programming language that lets you work more quickly and
integrate your systems more effectively. You can learn to use Python and
see almost immediate gains in productivity and lower maintenance costs.”

• Work more quickly: you get stuff done instead of fighting with the language and
environment for silly reasons

• Integrate your systems: Python is particular useful at creating big systems out of
possibly messy collections of software tools.

• Maintenance costs: Python code is more likely to be readable and hackable.

Sage is a big integrated system built out of several million lines of possibly messy
software, code written using Sage tends to be readable and hackable, and people use
Sage since it helps them get stuff done immediately.

2.2 The Sage Preparser

When you type commands into Sage, the computer programming language you use is
(almost) Python. Each line of code gets automatically run through a preparser before it
is sent to the Python interpreter. To see exactly what changes occur, use the preparse

command:

sage: preparse(’a = 2.5^3 ’)

"a = RealNumber ( ’2.5’)** Integer (3)"
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As you can see, decimal literals get wrapped using the RealNumber command, so
when you type 2.5, Python will see RealNumber(’2.5’). Similarly, integer literals
get wrapped using Integer. Finally, the caret symbol ^ is replaced by **, which is
Python’s exponentiation operator. One motivation for doing all this is that in Magma,
Maple, Mathematica, Matlab and LATEXthe ^ operator is exponentiation, and making
Sage have the same behavior as those systems helps minimize confusion (whereas in
Python ^ is “exclusive or”). The preparse does a few other things, but not much more.

If you want to turn off the preparser, type preparser(False):

sage: preparser(False)

sage: 2/3 + 2^3

1

sage: preparser(True)

sage: 2/3 + 2^3

26/3

Read more about the preparser at http://www.sagemath.org/doc/reference/

sage/misc/preparser.html.

2.3 Variables

In Python you create a variable by writing var = expression; for example,

sage: a = 2

sage: b = 3

sage: a + b

5

You can also include several assignment statements on the same line if you separate
them with a semicolon:

sage: c = 7; d = 15; e = 5

sage: c + d + e

27

You do not have to end lines with a semicolon. You can also assign the same value to
several variables at once:

sage: c = d = 10

sage: c + d

20

We have only used integers as the expression, but Python supports many other types
of objects, such as lists, which we make using square brackets:

sage: v = [7, 15, 5]; v

[7, 15, 5]
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The most important gotcha (and feature) of variables in Python is that variables
are a reference to a Python object, not a new copy of that object. Thus in the example
below, both v and w “reference” exactly the same Python list:

sage: v = [1, 2, 3]

sage: w = v

sage: w[0] = 10

sage: v

[10, 2, 3]

Continuing the above example:

sage: v[1] = 5

sage: w

[10, 5, 3]

If you want a copy of an object, use the copy command.

sage: v = [1,2,3]

sage: w = v

sage: z = copy(w)

sage: v[0] = 10

sage: print w

[10, 2, 3]

sage: z

[1, 2, 3]

The copy function only copies the references in the list:

sage: v = [[1,2], 3, 4]

sage: w = copy(v)

sage: w[1] = 10

sage: w[0][0] = 5

sage: v

[[5, 2], 3, 4]

sage: w

[[5, 2], 10, 4]

To recursively make a new copy of everything (as much as possible), use deepcopy:

sage: v = [[1,2], 3, 4]

sage: w = deepcopy(v)

sage: w[1] = 10; w[0][0] = 5

sage: v

[[1, 2], 3, 4]

sage: w

[[5, 2], 10, 4]

You probably won’t have to use deepcopy often. In over 500,000 lines of code in the
core Sage library, deepcopy is used around 177 times:

sage -grep deepcopy |wc -l

177
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The main reason many people are very confused by variables being references in
Python is that most other mathematical software (including both Mathematica and
Matlab) works differently. For example, in Matlab assignment to a variable creates a
new copy. For example, noting that arrays in Matlab are 1-based instead of 0-based,

$ matlab

>> v = [1,2,3]

v =

1 2 3

>> w = v

w =

1 2 3

>> v(1) = 10

v =

10 2 3

>> w

w =

1 2 3

And in Mathematica,

In [27]:= v = {1,2,3};

In [28]:= w = v;

In [29]:= v[[1]] = 10;

In [30]:= v

Out [30]= {10, 2, 3}

In [31]:= w

Out [31]= {1, 2, 3}

But of course in Sage:

sage: v = [1,2,3]

sage: w = v

sage: v[0] = 10

sage: v

[10, 2, 3]

sage: w

[10, 2, 3]

Remark 2.3.1. Another subtle difference in various computer languages is that expo-
nentiation may associate either left to right or right to left. For example,

sage: 3^3^3

7625597484987

But in Matlab, we have

$ matlab

>> 3^3^3

19683

Finally, in Maple we have

15



> 3^3^3

syntax error , ambiguous use of ‘^‘, please use parentheses:

Thus watch out: of the two possible design choices about the meaning of 3^3^3, we
quickly find three design decisions made in practice!

Like in Magma, Maple, Matlab, and Mathematica, you do not have to explicitly
declare the type of a variable, and it can have several different types in a single snippet
of code. This is different to the situation with C, C++ and Java1. Use the type function
to determine the type of a variable, and the id function to find out the memory location
of the object that a variable references.

sage: a = 10

sage: type(a)

<type ’sage.rings.integer.Integer ’>

sage: id(a) # random; memory location a points at

4468006416

sage: a = "hello world"

sage: type(a)

<type ’str’>

sage: id(a) # random; new memory location a now points at

4507478816

2.4 Control Flow

The basic control flow statements in Python are if, while and for. The if statement
lets you choose between alternative code at runtime. Here is an example:

a = 2; b = 3

if a > b:

print (1)

print("-----")

elif a == b:

print (2)

else:

print (3)

The Python interpreter evaluates the expression right after if and before the colon, and
if it evaluates to True, then all of the code that is indented before the elif or else is
executed. Otherwise, the expression right after elif is evaluated, and if True, then the
indented code directly below it is evaluated. Otherwise the code under the final else
is evaluated. The elif and else are optional, and you can have any number of elif
blocks.

Unlike nearly every other programming language, there are no explicit begin and
end markers around the block of code that will get evaluated when a branch of the if
statement is satisfied. Instead the code is indented. There are at least two advantages
to Python’s choice: (1) you will type and read less, and (2) you will not be fooled by
misleading indentation in code like this C code:

1Sage is “dynamically typed”, whereas C, C++ and Java are “statically typed”.
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if (a>b)

printf("1");

printf("-----");

Python’s while statement repeatedly executes the code indented below it until the
expression between the while and the colon evaluates to False, or until an explicit break
statement is executed. Here is an example:

i = 5

while i > 0:

print(i)

i = i - 1

if i == 20:

break

When you evaluate this code, you’ll see the following output:

5

4

3

2

1

Each time the indented block of code is executed, the number i is printed out, then
the line i = i - 1 replaces i by an integer that is one smaller. Once 0 is reached, the
while loop terminates.

If instead, we set i = 25 at the top, and evaluate the code, we see:

25

24

23

22

21

This is because the if statement evaluates to True once i hits 20, and the break

statement causes the while loop to terminate.
Use the Python for loop to iterate over each element in a list or any other “iterable”

object. For example,

for i in [1, 2, 3, 4, 5]:

print(i, i*i)

will make a table of squares:

(1, 1)

(2, 4)

(3, 9)

(4, 16)

(5, 25)

You can also use break in a for loop.
There are many ways to make lists to iterate over (see Section 2.7.1), for example:
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sage: range (10)

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

sage: range (5 ,20)

[5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19]

sage: [1..10]

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

sage: [n^2 for n in [1..10]]

[1, 4, 9, 16, 25, 36, 49, 64, 81, 100]

sage: [1,3,..,10]

[1, 3, 5, 7, 9]

sage: xrange (10^10 ,10^10+10^9) # a "lazy" list

xrange (10000000000 , 11000000000)

For example,

for i in xrange (10^10 , 10^10+10^9):

print(i)

if i > 10^10 + 5: break

results in

10000000000

10000000001

10000000002

10000000003

10000000004

10000000005

10000000006

2.5 Functions

Use def to define a function in Python.

def foo(a, bar , w=10):

if a:

print bar

# a block of code that is indented

print a, bar , w

The syntax is similar to the syntax of if, for, and while: a keyword, something, a colon,
then an indented block of code that gets executed under certain circumstances. More
precisely, define a function put def, then the name of the function, then in parenthesis
the inputs to the function with possible default values (e.g., w=10 above makes w default
to 10 if w is not specified). When the function is called, the input variables to the
function are set to reference the inputs, and the code in the body of the function is
executed.

sage: foo(1, ’abc’, 5)

abc

1 abc 5
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sage: foo(1, ’xyz’)

xyz

1 xyz 10

You can explicitly specify the input variables as follows, which can make reading
your code later easier:

sage: foo(bar=’gold’, a=False , w=3)

False gold 3

Unlike the situation with C/C++/Java, there is absolutely no way in the Python
language to explicitly declare that the types of the inputs and outputs of a function.
You can put constraints on types explicitly using the isinstance function, or using
decorators (see Section 2.9).

def g(a, b):

if not isinstance(a, Integer ):

raise TypeError

return a+b

Then we have:

sage: g(2, 3)

5

sage: g(’sage’, ’math’)

Traceback (click to the left of this block for traceback)

...

TypeError

Returning to the function foo defined above, it will just work with any inputs for
which + is defined. For example, a, b, and c could be strings or lists:

sage: foo(’a’, ’b’, ’c’)

a= a b= b c= c

’abc’

sage: f([1,2], [3,4], [5 ,6])

a= [1, 2] b= [3, 4] c= [5, 6]

[1, 2, 3, 4, 5, 6]

Thus illustrates something in Python called “duck typing”. So long as an object quacks
like a duck (in our case, something that supports +), then we just treat it like a duck.
In this sense, all Python functions are extremely generic.

Any variables that are created in the body of the function are local to the function,
unless you explicitly use the global keyword. For example,

c = 1; d = 1

def bar(a, b):

global d

c = a; d = b

print c, d
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When we call bar, the global variable d gets changed, but the global c does not
change:

sage: bar(5, 10)

5 10

sage: print c, d

1 10

You can also have functions nested within functions (etc.), where the nested function
is completey hidden within the scode of the function that contains it:

c = 1; d = 1

def bar(a, b):

global d # this is a rare beast.

c = a; d = b

print c, d

def foo(x, y):

c = ’fun’; d = ’stuff’

print c, d

foo(c,d)

print c,d

Running this, note that the global c is not changed, and locally within foo we have yet
another pair of variables also called c and d that have nothing to do with the global c,
d or the c, d defined at the top of bar.

sage: bar (5 ,10)

5 10

fun stuff

5 10

sage: c,d

(1, 10)

As illustrated above, a Python function can have side effects, and behave differently
depending on global variables. Thus Python “functions” are different than the functions
f : X → Y in mathematics. In mathematics, f(x) depends only on x, not on the state
of some global variable, the time of day, phase of the moon, etc, but in Python f(x)

can depend on more than just x. The following Python function evaluates to x2 when
the number of seconds since the beginning is even, and x3 when it is odd:

def f(x):

import time

if int(time.time ()) % 2 == 0:

return x^2

else:

return x^3

Here we imported a Python module called time using the Python import command.
In case you are wondering “what the heck is ’time”’, you can type

sage: import time

sage: help(time)
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into Sage. In the notebook, you’ll get a link to a webpage all about the time Python
module. Python includes an enormous standard library of modules, and you should
read all about them at http://docs.python.org/library/. I have more than once
reimplemented functionality that is already in one of the standard modules because I
didn’t think to look at the above web page. Want to use Python to parse a webpage?
create JSON or XML? use regular expressions? walk a directory tree? compress a file?
use a SQLite database? Then consult the Python standard library.

Returning to our function f defined above, when we run it, we might get:

sage: f(7)

49

sage: f(7)

343

Sage (but not Python) also has a notion of Calculus-style functions. For example,

sage: f(x,y) = sin(x) + e^cos(y)

sage: f(2,pi)

e^(-1) + sin(2)

sage: f.integrate(x)

(x, y) |--> x*e^cos(y) - cos(x)

sage: plot3d(f, (x,-pi,pi), (y,-2*pi ,2*pi), viewer=’tachyon ’)

2.5.1 Further remarks on passing variables to functions

We mentioned above that Python uses call by reference semantics. The following ex-
ample helps clarify this point very explicitly. First we create a list and note where it is
stored in memory (at address 69421536 on my computer right now).

sage: v = [1,2,3]

sage: id(v) # random - memory location of v

69421536

Next we define a function that prints where in memory its input w is stored, and modifies
w:
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sage: def foo(w):

... print "location of w =", id(w)

... w.append(’hello’)

... print "w =", w

When we call foo with v, note that the variable w points to the same memory location
as v:

sage: foo(v)

location of w = 69421536

w = [1, 2, 3, ’hello’]

Moreover, and it’s critical you understand this, the list v has now changed!

sage: v

[1, 2, 3, ’hello ’]

If we want foo to modify a copy of v instead, we have to explicitly use the copy function:

sage: foo(copy(v))

location of w = 69535936

w = [1, 2, 3, ’hello’, ’hello’]

And this worked fine, as expected:

sage: v

[1, 2, 3, ’hello ’]

This illustrates part of the “Zen of Python”:

Explicit is better than implicit.
To see the rest of the Zen of Python, type import this into Sage.

2.5.2 Gotcha: Default Arguments

Consider the following function my_append(a,L) which appends a to L, but whose
second argument is optional, so my_append(a) just creates a new list [a]:

sage: def my_append(a, L=[]):

... L.append(a)

... print L

sage: my_append (1)

[1]

sage: my_append (2) # what?

[1, 2]

sage: my_append (3) # what? what?

[1, 2, 3]

What happened? You might have expected to see output of [1], then [2], then
[3]. Let’s modify the function my_append to also print the memory location of L.
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sage: def my_append(a, L=[]):

... L.append(a)

... print L, id(L)

sage: my_append (1) # random memory location

[1] 69438424

sage: my_append (2) # same random memory location

[1, 2] 69438424

sage: my_append (3) # same random memory location

[1, 2, 3] 69438424

When the function my_append is first encountered by the Python interpreter, it
evaluates each of the default arguments. When Python sees L=[], it creates a list in
memory at location 69438424. Each time you call my_append and don’t specify the
second argument, that same list—at address 69438424—is used, and modified in this
case.

2.5.3 Gotcha: Recursion

Python supports recursive functions, but they are cripled in that there is by default
a fairly small limit on the depth of recursion (you can increase this). This is because
Python does not have “tail recursion” like a language such as lisp.

def my_factorial(n):

if n == 1: return n

assert n > 0

return n * my_factorial(n-1)

This works fine:

sage: my_factorial (20)

2432902008176640000

But:

sage: my_factorial (1000)

Traceback (click to the left of this block for traceback)

...

RuntimeError: maximum recursion depth exceeded in cmp

So be careful when writing recursive functions. Often recursive functions will never
ever be called with a big depth. However, if you need to write a recursive function
that will be called with a big depth, you can simply increase the recursionlimit as
illustrated below.

sage: import sys

sage: sys.getrecursionlimit ()

1000

sage: sys.setrecursionlimit (1000000)

sage: a = my_factorial (1000) # works fine!

As an aside, you can in fact write little lisp programs using Sage if you want, since
Sage includes an embedded lisp interpreter. For example,
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sage: lisp.eval(’(defun factorial (n) (if (= n 1) 1 (* n (factorial (- n 1))))) ’)

’FACTORIAL ’

sage: lisp(’(factorial 10)’)

3628800

sage: lisp (10). factorial ()

3628800

2.5.4 Style

There is a standard coding style that almost everybody uses when writing Python code.
Read about it in the Python tutorial:

http://docs.python.org/tutorial/controlflow.html#

intermezzo-coding-style

Here is a stylish example:

def good_function(a, b = 10):

"""

This is a good function.

This function has a docstring and is named using

lower_case_with_underscores.

It takes as input integers a and b and outputs something computed

using them. (Notice that the above line is <= 79 characters .)

"""

c = 0

for i in range(a):

# add i-th power of b to a and

# put spaces around operators (comment on line of its own).

c = b**i + a

# Another block , and a correctly named class (CamelCase ).

class UselessWrapper(int):

pass

return UselessWrapper(c)

2.6 Classes

Python classes are typically used to define your own new data type (though they can
be used in other ways as well). New classes are easy to define, and support standard
object-oriented features such as “multiple inheritance” and “operator overloading”.

Here is a trivial example of a class:

class CoolThing(object ):

def foo(self , xyz):

print self , xyz
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Let’s try it out:

sage: z = CoolThing ()

sage: z.foo(’abc’)

<__main__.CoolThing object at 0x...> abc

sage: type(z)

<class ’__main__.CoolThing ’>

The line class CoolThing(object): starts declaration of the class CoolThing,
which derives from the builtin class object. Typing z = CoolThing() creates a new
instance of the class with the variable z referencing it. The foo method defined above is
a function that can only be used with instances, which we call by writing z.foo(’abc’).
Note that the first argument to def foo(self, xyz) is self, which refers to the par-
ticular instance of the class.

Next, we make a more complicated class, which also illustrates how to customize
creation of new objects using the __init__ “dunder method”, define how our objects
print themselves using __repr__, and define how + and * implement arithmetic using
__add__ and __mul__.

class MyRational:

def __init__(self , n, d):

self._n = Integer(n); self._d = Integer(d)

def __repr__(self):

return ’%s/%s’%(self._n, self._d)

def __add__(self , right):

return MyRational(self._n*right._d + self._d*right._n,

self._d*right._d)

def __mul__(self , right):

return MyRational(self._n*right._n, self._d*right._d)

def reduced_form(self):

""" Return the reduced form of this rational number."""

a = self._n / self._d

return MyRational(a.numerator (), a.denominator ())

Once we define the above class, we have our own new version of “rational numbers”.

sage: a = MyRational (2 ,6); b = MyRational (2, 3)

sage: print a, b

2/6 2/3

sage: a.reduced_form ()

1/3

sage: c = a + b; c

18/18

sage: c.reduced_form ()

1/1

However, notice that subtraction doesn’t work:

sage: a - b

Traceback (most recent call last):

...

TypeError: unsupported operand type(s) for -: ’instance ’ and ’instance ’
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This is because we didn’t define a __sub__ method. You can add that method,
which looks just like the __add__ method, except with the + replaced by a -, and
subtraction will work. Alternatively, we can define a derived class that also defines a
__sub__ method, as follows:

class MyRational2(MyRational ): # inheritence (multiple also fully supported)

def __sub__(self , right):

return MyRational2(self._n*right._d - self._d*right._n,

self._d*right._d)

This has absolutely no impact on the original MyRational class:

sage: MyRational (2,6) - MyRational (2, 3)

Traceback (most recent call last):

...

TypeError: unsupported operand type(s) for -: ’MyRational ’ and ’MyRational ’

However, instances of MyRational2 support subtraction, in addition to the multiplica-
tion and addition defined above:

sage: a = MyRational2 (2 ,6); b = MyRational2 (2, 3)

sage: print a, b

2/6 2/3

sage: a + b

18/18

sage: a - b

-6/18

Big caveat (!): If you do a+b, then the resulting object is an instance of MyRational,
not of MyRational2!

sage: type(a-b)

<class ’__main__.MyRational2 ’>

sage: type(a+b)

<class ’__main__.MyRational ’>

This is because the __add__ method is execute, which explicitly refers to MyRa-
tional. You can make the code more robust regarding derivation by using self.__class__,
as illustrated below:

class MyRational3(object ):

def __init__(self , n, d): # called to initialize object

self._n = Integer(n); self._d = Integer(d)

def __add__(self , right): # called to implement self + right

return self.__class__(self._n*right._d + self._d*right._n,

self._d*right._d)

class MyRational4(MyRational3 ):

def __sub__(self , right): # called to implement self + right

return self.__class__(self._n*right._d - self._d*right._n,

self._d*right._d)

Now things work better:
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sage: a = MyRational4 (2 ,6); b = MyRational4 (2, 3)

sage: type(a-b), type(a+b)

(<class ’__main__.MyRational4 ’>, <class ’__main__.MyRational4 ’>)

Here is another example that illustrates a default class attribute.

class MyClass:

"""

A simple example class.

"""

# a Python object attribute; this is basically a default

# piece of data that is available to each instance of the

# class , but can be changed in the instance without changing

# it in the class. (See example below.)

i = 12345

# A function attribute. Again , this is available to each

# instance , and can be changed in the instance without

# changing the class object itself.

def f(self):

return ’hello world ’

First notice that MyClass itself is just another Python object (we can have variables
reference it, pass it into functions, etc.):

sage: MyClass

<class __main__.MyClass at 0x...>

sage: MyClass.i

12345

sage: MyClass.f

<unbound method MyClass.f>

sage: MyClass.__doc__

’A simple example class.’

We “call” MyClass to create an instance x of it:

sage: x = MyClass (); x

<__main__.MyClass instance at 0x...>

We can then call methods of the instance x and get access to its attributes.

sage: x.f()

’hello world’

sage: x.i

12345

We can also change the attributes and methods of x.

sage: x.i = 50

sage: def g(): return "goodbye"

sage: x.f = g

sage: x.f()

’goodbye ’
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This does not change the attributes or methods of MyClass or new instances of
MyClass.

sage: y = MyClass (); y.i

12345

sage: y.f()

’hello world’

We could change those if we wanted to though, as follows:

sage: def g(self): return "goodbye"

sage: MyClass.f = g

sage: y = MyClass ()

sage: y.f()

’goodbye ’

As you can see, Python is a dynamic language. The above is all happening at
runtime. This is different than static languages such as C/C++/Java. It has pros and
cons, with the main con being that Python can be slower. We will learn about Cython
soon, which is similar to Python but gives you the option of surrending some of the
dynamic features of Python in exchange for faster (but less dynamic) static semantics.

2.6.1 Creating a Number

The next example illustrates how to use self and some “dunder” (=double underscore)
methods:

class Number:

def __init__(self , x):

# called when Number is instantiated

self.x = x

def __repr__(self):

# defines how Number prints

return "The Number %s"%self.x

def __add__(self , right):

# defines how "+" works

return Number(self.x + right.x)

Now we create a number n, print it, and add it (using +) to another number.

sage: n = Number (37)

sage: n

The Number 37

sage: n + Number (15)

The Number 52

Try to add subtraction and multiplication to the class Number right now. The names
of the relevant dunder methods are __sub__ and __mul__.

See http://docs.python.org/reference/datamodel.html for long lists of dunder
methods.
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2.7 Data Types: list, tuple, set, str, and file

2.7.1 Lists

A list in Python is a finite ordered “list” of any Python objects at all. Many useful
operations are supported, along with a handy “list comprehension” notation that makes
building lists easy.

First we create a list, whose entries are an integer, a string, a data type, and another
list with a list in it. Note that v has type list.

sage: v = [3, ’hello ’, Integer , [’a’, [1 ,2]]]

sage: type(v)

<type ’list’>

sage: v

[3, ’hello ’, <type ’sage.rings.integer.Integer ’>, [’a’, [1, 2]]]

Lists in Python are 0-based, in that v[0] is the first entry in the list. Remember this!

sage: v[0]

3

sage: v[1]

’hello’

You can also index into the list from the other side by using negative numbers:

sage: v[-1]

[’a’, [1, 2]]

sage: v[-2]

<type ’sage.rings.integer.Integer ’>

You can slice lists. When slicing you specify a start and stop point, and take all the
elements between. Keep in mind that it includes the starting point you specify, but
excludes the endpoint.

sage: v[1:]

[’hello’, <type ’sage.rings.integer.Integer ’>, [’a’, [1, 2]]]

sage: v[0:3]

[3, ’hello ’, <type ’sage.rings.integer.Integer ’>]

sage: v[0:3:2] # just the even -indexed positions

[3, <type ’sage.rings.integer.Integer ’>]

Use len to get the length of a list. New Sage/Python users often get very frustrated
trying to figure out how to find the length of a list. Just memorize this right now!

sage: len(v)

4

You can also sort, append to, delete elements from, extend, etc., lists. See the Python
documentation.

sage: w = copy(v)

sage: w.sort (); w

[3, [’a’, [1, 2]], ’hello ’, <type ’sage.rings.integer.Integer ’>]
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sage: w.extend ([1 ,2 ,3,4]); w

[3, [’a’, [1, 2]], ’hello ’, <type ’sage.rings.integer.Integer ’>,

1, 2, 3, 4]

You can build lists in place using list comprehension, which is a lot like ”set building
notation” in mathematics. For example:

sage: [n*(n+1)/2 for n in range(1, 10) if n%2 == 1]

[1, 6, 15, 28, 45]

The basic structure of a list comprehension is the following (there are more compli-
cated forms):

[ <expression(i)> for i in <iterable > <optional if condition > ]

Notice above that for n in range(1,10) and if n%2 == 1 are both valid snippets
of Python code. Aside from possible scoping issues, list comprehensions are basically
equivalent to combining a for loop with an if statement in them, where you append to
a list. To illustrate this, note that you can literally almost rearrange the code of such a
for loop into a list comprehension, for example:

z = []

for n in range(1, 10):

if n % 2 == 1:

z.append(n*(n+1)/2)

If you evaluate the above code, then print z, you’ll see

sage: z

[1, 6, 15, 28, 45]

If you want to be effective with Sage/Python, you must master lists.

2.7.2 Tuples

Tuples are similar to lists, except you can’t change which objects are stored in a tuple.
Also, there is no tuple-comprehension; you have to make a list v, then change it into a
tuple by typing tuple(v). You can however, change the objects themselves if they are
mutable.

sage: v = (3, ’hello ’, Integer , [’a’, [1 ,2]]); type(v)

<type ’tuple’>

sage: v[0] = 5 # nope!

Traceback (most recent call last):

...

TypeError: ’tuple’ object does not support item assignment

sage: v[3]. append(’change a mutable entry ’); v

(3, ’hello ’, <type ’sage.rings.integer.Integer ’>,

[’a’, [1, 2], ’change a mutable entry’])

BIG FAT WARNING: The following looks like a “tuple comprehension” (if there
were such a thing), but it isn’t one:
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sage: w = (n*(n+1)/2 for n in range(1, 10) if n%2 == 1); type(w)

<type ’generator ’>

Notice that you can’t index into w:

sage: w[0]

Traceback (click to the left of this block for traceback)

...

TypeError: ’generator ’ object is unsubscriptable

You can iterate over w though:

sage: for n in w: print n,

1 6 15 28 45

Here, we get no output since w is “used up”.

sage: for n in w: print n,

Anyway, if you want to make a tuple using a list comprehension, be explicit, like so:

sage: tuple( n*(n+1)/2 for n in range(1, 10) if n%2 == 1 )

(1, 6, 15, 28, 45)

2.7.3 Strings

A string is a finite immutable (unchangeable) sequence of characters. Python supports
a wonderful range of string processing functions. To make a string literal:

• Enclose it is in either single or double quotes (just be consistent) – if you use single
quotes you can use double quotes in your string without escaping them, and vice
versa.

• For a multiline string use three single or double quotes in a row – then you can
include newlines directly in your string.

• There are many escape characters for including special characters in strings, e.g.,
’\n’ for “newline”. If you put the letter r right before the quotes you get a raw
string, for which a backslash just stays a backslash and you can’t escape anything;
this is often useful for LATEX code.

The following examples illustrates some of the above ways of creating strings.

sage: s = "this is a string ’s string using double quotes"; s

"this is a string ’s string using double quotes"

sage: print s

this is a string ’s string using double quotes

sage: s = ’this is a string"s using single quotes ’; s

’this is a string"s using single quotes ’

31



s = """ this is a

multiline string."""

s = r""" Consider \sin(x) +

\cos(y) and add \pi."""

Strings in Python are extremely flexible and easy to manipulate. You can slice them
exactly like lists, find substrings, concatenate, etc.

sage: s = "This is a string."; s[:10]

’This is a ’

sage: s[10:]

’string.’

sage: s[::2] # get just the even indexed characters

’Ti sasrn.’

sage: s.find(’a’)

8

sage: s + " Yes , a string."

’This is a string. Yes , a string.’

sage: s.replace(’a’, ’b’)

’This is b string.’

The join method is also amazingly useful. If s is a string, then s.join([list of

strings]) joins together the list of strings putting s between each.

sage: ’, ’.join([’Stein ’, ’William ’, ’Arthur ’])

’Stein , William , Arthur ’

Other useful methods are upper and capitalize:

sage: s = ’this is lower case’; s.upper ()

’THIS IS LOWER CASE’

sage: s.capitalize ()

’This is lower case’

Finally, the string formating operator % appears constantly in Python code and is
extremely useful to know about. Basically, you just put %s’s in your string, and these
get replaced by the string representations of a tuple of Python objects. Here’s how you
use it:

sage: ’Hi %s. Meet %s.’%(’Mom’, 2/3)

’Hi Mom. Meet 2/3.’

Really what just happened was we created a string and a tuple, and used the mod
operator on them, as illustrated below.

sage: s = ’Hi %s. Meet %s.’

sage: t = (’Mom’, 2/3)

sage: s % t

’Hi Mom. Meet 2/3.’
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There are many other formating options besides just %s. E.g., %f is useful for
numerical computations.

sage: ’%.2f %.3f’%(.5, 7/11)

’0.50 0.636’

Above, %.2f formats the string with 2 decimal digits after the point, and %.3f with
3 decimal digits.

2.7.4 Sets

A set consists of unique elements with no ordering. You know what is or isn’t in the
set and can interate over it. The elements of a set must be immutable, since otherwise
there would be no way to guarantee objects stay unique after putting them together in
a set. Lists are not immutable so can’t be put in a set, but strings can be.

sage: v = [’this’, ’is’, ’what’, ’this’, ’is’]; v

[’this’, ’is’, ’what’, ’this’, ’is’]

sage: X = set(v); X

set([’this’, ’is’, ’what’])

sage: type(X)

<type ’set’>

sage: X[0] # makes no sense

Traceback (most recent call last):

...

TypeError: ’set’ object does not support indexing

sage: ’this’ in X

True

sage: ’that’ in X

False

sage: for a in X: print a,

this is what

Here is how to use the set data structure to obtain the distinct types appearing in a
list:

sage: v = [1/2, 5/8, 2.5, 5/2, 3.8]

sage: t = [type(a) for a in v]; t

[<type ’sage.rings.rational.Rational ’>,

<type ’sage.rings.rational.Rational ’>,

<type ’sage.rings.real_mpfr.RealLiteral ’>,

<type ’sage.rings.rational.Rational ’>,

<type ’sage.rings.real_mpfr.RealLiteral ’>]

sage: list(set(t))

[<type ’sage.rings.real_mpfr.RealLiteral ’>,

<type ’sage.rings.rational.Rational ’>]

If you create your own class, you can decide whether or not Python should consider
it immutable by whether or not you define a __hash__ dunder method. If defined, then
your object is considered immutable, and is allowed in sets. First, notice that sets can’t
contain lists.

sage: v = [[1,2], [1 ,4]]
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sage: set(v)

Traceback (most recent call last):

...

TypeError: unhashable type: ’list’

However, nothing stops us from making a class that derives from list and has a hash
method:

class NaughtyList(list):

def __hash__(self): # a 32 or 64-bit int; equal objects should have the same hash.

return hash(str(self))

sage: v = [NaughtyList ([1,2]), NaughtyList ([1 ,4])]; v

[[1, 2], [1, 4]]

sage: X = set(v); X

set([[1, 2], [1, 4]])

Do something naughty:

sage: v[1][1] = 2

sage: X

set([[1, 2], [1, 2]])

sage: v[0] == v[1]

True

The set doesn’t know:

sage: X

set([[1, 2], [1, 2]])

2.7.5 Files

It is straightforward to open, read, write, append to, and close files on disk. For example,
below we create a file foo, write to it, cose it, open it, then read it.

sage: F = open(’foo’,’w’)

sage: F

<open file ’foo’, mode ’w’ at 0x...>

sage: F.write(’hello there ’)

sage: F.close ()

sage: print open(’foo’).read()

hello there

In the Sage notebook each input cell is executed in a different directory. Thus if you
just create a file in one cell, you can’t easily open and read it in another cell. The best
workaround is to use the DATA variable, which is a string that contains the name of a
single directory that all cells have access to, and which you can upload/download files
to and from using the Data menu.

sage notebook: open(DATA + ’foo’,’w’).write(’hi’)

sage notebook: print open(DATA + ’foo’).read()
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hi

sage notebook: os.system(’ls -l %s’%DATA)

total 4

-rw -r--r-- 1 sagenbflask sagenbflask 2 ... ... foo

0

sage notebook: print DATA

/sagenb/flask/sage_notebook.sagenb/home /.../.../ data/

Another important topic involving files is how to read in interesting files, e.g., png
image files, wav audio files, csv files, Excel spreadsheets, etc. There are various ways
of loading a huge range of interesting files into Sage, but unfortunately there is still no
single simple command that parses them all. This would be a good idea for a student
project.

2.8 Exception Handling

Python fully supports exception handling, which allows us to raise and handle error
conditions eloquently. The syntax in Python for exception handling is as simple and
straightforward as you can possibly imagine.

We would like to write a function formal_sum that takes as input two arbitrary
objects, and adds them (using +) if possible, and if not creates their sum in some formal
sense. Our first attempt, of course, does not just magically just work:

def formal_sum(a, b):

return a + b

Then:

sage: formal_sum (2, 3) # good

5

sage: formal_sum (5, [1,2,3]) # nope

Traceback (most recent call last):

...

TypeError: unsupported operand parent(s) for ’+’:

’Integer Ring’ and ’<type ’list’>’

How can we know whether or not a + b will work? You could try to do something
really complicated by attempting to predict (via looking at code?) whether __add__

will work, but that way insanity lies. Instead, use exception handling:

class FormalSum(object ):

def __init__(self , a, b):

self.a = a; self.b = b

def __repr__(self):

return ’%s + %s’%(self.a, self.b)

def formal_sum(a, b):

try:

return a + b

except TypeError:

return FormalSum(a,b)
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The class FormalSum block above defines a new Python class whose instances represent
the formal sum of the two attributes a and b, and which print themselves nicely. The
function formal_sum tries to add a and b, and if this causes a TypeError, it instead
creates a FormalSum instance.

sage: formal_sum (3, 8)

11

sage: formal_sum (5, [1,2,3])

5 + [1, 2, 3]

sage: formal_sum (5, ’five’)

5 + five

For our next example, instead of catching an error, we create a function divide that
raises an error if the second input d equals 0.

def divide(n, d):

if d == 0:

raise ZeroDivisionError , "divide by 0!?!"

return n/d

Try it out:

sage: divide(5, 7)

5/7

sage: divide(5, 0)

Traceback (most recent call last):

...

ZeroDivisionError: divide by 0!?!

Typically, if you try to divide numbers at the denominator is 0, Sage will raise a
ZeroDivisionError. Just as above, we can catch this case if we want, and return
something else, as illustrated below:

def divide2(n, d):

try:

return divide(n, d) # or just put "n/d"

except ZeroDivisionError:

return ’infinity ’

sage: divide2(5, 3)

5/3

sage: divide2(5, 0)

’infinity ’

This web page http://docs.python.org/lib/module-exceptions.html lists all
the standard builtin exceptions along with what each means. Some common exceptions
that often appear in the context of mathematics are: TypeError, ZeroDivisionError,

ArithmeticError, ValueError, RuntimeError, NotImplementedError, OverflowError,

IndexError. We illustrate each of these below:

sage: ’’.join ([1 ,2])
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Traceback (most recent call last):

...

TypeError: sequence item 0: expected string , sage.rings.integer.Integer found

sage: 1/0

Traceback (most recent call last):

...

ZeroDivisionError: Rational division by zero

sage: factor (0)

Traceback (most recent call last):

...

ArithmeticError: Prime factorization of 0 not defined.

sage: CRT(2, 1, 3, 3)

Traceback (most recent call last):

...

ValueError: No solution to crt problem since gcd(3,3) does not divide 2-1

sage: find_root(SR(1), 0, 5)

Traceback (most recent call last):

...

RuntimeError: no zero in the interval , since constant expression is not 0.

sage: RealField (50)( brun)

Traceback (most recent call last):

...

NotImplementedError: brun is only available up to 41 bits

sage: float (5)^ float (902830982304982)

Traceback (most recent call last):

...

OverflowError: (34, ’Numerical result out of range’)

sage: v = [1,2,3]

sage: v[10]

Traceback (most recent call last):

...

IndexError: list index out of range

The key points to remember about exceptions are:

1. Three keywords: try, except, raise

2. How to catch multiple possible exceptions correctly (there is a gotcha here – see
below!).

3. One more keyword: finally

There is more to exceptions, but these are the key points. We illustrate the last two
below in a contrived example.

def divide(n, d):

try:

return n/d

except (ZeroDivisionError , ValueError), msg:

print msg

return ’%s/%s’%(n,d)

except TypeError , NotImplementedError:

# the above line is PURE EVIL (!)

print "NotImplementedError is now ’%s’"%NotImplementedError

print "What have I done?!"
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finally:

print "The finally block is *always* executed."

Now try it out:

sage: divide (2,3)

The finally block is *always* executed.

2/3

sage: divide(2, 0)

Rational division by zero

The finally block is *always* executed.

’2/0’

sage: divide(’hi’, ’mom’)

NotImplementedError is now ’unsupported operand type(s) for /: ’str’ and ’str’’

What have I done?!

The finally block is *always* executed.

The form of the except statement is:

except [single exception], message

except (tuple ,of,exceptions), message </p>

For example,

try:

import foobar

1/0

except (ZeroDivisionError , ImportError), msg:

print "oops --", msg

outputs oops -- No module named foobar and

try:

1/0

import foobar

except (ZeroDivisionError , ImportError), msg:

print "oops --", msg

outputs oops -- Rational division by zero.
An extremely confusing error, which has cost me hours of frustration, is to write

except exception1 , exception2:

The result is that if exception1 occurs, then exception2 is set to the error message.
Don’t make the same mistake.

For example, if we evaluate

try:

1/0

import foobar

except ZeroDivisionError , ImportError:
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print "oops --"

then evaluate

try:

import foobar

1/0

except ImportError , ZeroDivisionError:

print "oops --"

we see

Traceback (click to the left of this block for traceback)

...

ImportError: No module named foobar

Wait, what just happened above? We appear to have totally broken Python!? Actu-
ally, we have smashed the ImportError variable, making it point at the ZeroDivisionError
message above!

sage: ImportError

ZeroDivisionError(’Rational division by zero’,)

We can fix this for now using the reset command, which resets a variable to its default
state when Sage started up:

sage: reset(’ImportError ’)

sage: ImportError

<type ’exceptions.ImportError ’>

Another major mistake I made once2 with exceptions is illustrated in the following
example code:

def divide(n, d):

if d == 0:

raise ZeroDivisionError , "error dividing n(=%s) by d(=%s)"%(n,d)

It’s so friendly and nice having a helpful error message that explains what went
wrong in the division, right? (No!):

sage: divide (3948 ,0)

Traceback (click to the left of this block for traceback)

...

ZeroDivisionError: error dividing n(=3948) by d(=0)

But if we put a large value of n as input, then several seconds (or minutes!) will
be spent just creating the error message. It’s ridiculous that divide2 below takes over 3
seconds, given that all the time is spent creating an error message that we just ignore.

def divide2(n,d):

try:

2Actually, I made it several hundred times in 2005–2006!
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divide(n, d)

except ZeroDivisionError , msg:

return ’infinity ’

sage: n = 3^(10^7)

sage: time divide2(n, 0)

’infinity ’

Time: CPU 3.45 s, Wall: 3.46 s

Once the Sage developer David Harvey spent a long time tracking down why certain
power series arithmetic in Sage was so slow for his application. It turned out that deep
in the code there was a try/except block in which the error message itself took over a
minute to construct, and then it was immediately discarded. Moral: be very careful
when constructing the error message that you include along with an exception!

2.9 Decorators

The definition of decorators is remarkably simple, but using them is subtle, powerful,
and potentially dangerous. From PEP 318 (see http://www.python.org/dev/peps/

pep-0318), we have the following new notation in Python (note the first line with the
mysterious @ sign):

@dec1

def func(arg1 , arg2 , ...):

pass

This is equivalent to:

def func(arg1 , arg2 , ...):

pass

func = dec2(dec1(func))

That’s it!
To motivate the point of decorators, let’s make a function called echo that takes

as input a function f, and returns a new function that acts just like f, except that it
prints all of its inputs. Here we use *args and **kwds, which is something that we have
not discussed before. In Python, use *args to refer to all of the positional inputs to
a function, and **kwds to refer to all of the keyword inputs. When you do this, args
is a Python tuple containing the positional inputs in order, and kwds is a dictionary
of the keyword=value pairs. You can pass args and kwds on to another function (as
illustrated below) by typing *args and **kwds.

def echo(f):

def g(*args , **kwds):

print "args =", args

print "kwds =", kwds

return f(*args , **kwds)

return g

Now, let’s try it out. Define a function:
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def add_em_up(a, b, c):

return a + b + c

Now use it:

sage: add_em_up (1, 2, 3)

6

The following works, but it sort of looks funny.

sage: add_em_up = echo(add_em_up)

sage: add_em_up (1, 2, 3)

args = (1, 2, 3)

kwds = {}

6

Using a decorator right when we define add_em_up is much, much cleaner:

@echo

def add_em_up(a, b, c):

return a + b + c

Now we have:

sage: add_em_up (1, 2, 3)

args = (1, 2, 3)

kwds = {}

6

Here’s another example of a very handy decorator (only available in the Sage note-
book):

@interact

def add_em_up(a=1, b=[1..10] , c=(1..10)):

return a + b + c

A hope you can sense the possibilities.... Here we do type checking:

class returns:

def __init__(self , typ):

self._typ = typ

def __call__(self , f):

return lambda *args , **kwds: self._typ(f(*args , **kwds))
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@returns(float)

def f(n,m):

""" Returns n + m."""

return n + m

Let’s try it out:

sage: f(2,3)

5.0

sage: type(f(5 ,6))

<type ’float’>

sage: f(’4’, ’123’)

4123.0

Here’s another example I use all the time. If you put @parallel(ncpus) before a
function and you call the function using a list as input, then the function gets evaluated
at each element of the list in parallel, and the results are returned as an iterator. If you
call the function without giving a list as input, it just works as usual (not in parallel).

@parallel (10)

def f(n):

sleep (1) # make function seem slow

return n*(n+1)/2

First, try it not in parallel, which takes a long time.

%time

sage: for n in [1..10]: print n, f(n)

1 1

2 3

3 6

4 10

5 15

6 21

7 28

8 36

9 45

10 55

CPU time: 0.00 s, Wall time: 10.00 s

Now try it in parallel:

%time

sage: for X in f([1..10]): print X

(((1,), {}), 1)

(((2,), {}), 3)

(((3,), {}), 6)

(((4,), {}), 10)

(((5,), {}), 15)

(((6,), {}), 21)

(((7,), {}), 28)

(((8,), {}), 36)

(((9,), {}), 45)
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(((10,), {}), 55)

CPU time: 0.19 s, Wall time: 1.32 s

2.10 The Ecosystem

The Sage distributuion itself consists of about 100 open source programs and libraries,
which (like Linux) are developed by a loosely knit international group of programmers.
Many of these programs are written as Python libraries.

Any software engineer knows that a programming language is much more than just
the formal language specification or even a particular implementation. It’s also the user
community, the general pace of development, and—most importantly—the collections
of tools and libraries that are available in that language, especially the free ones. Python
excels in available tools, as the following list of many of the Python-based components
of Sage attests:

• Pycrypto – fast implementations of many cryptosystems.

• Cython – a Python compiler and tool for efficient use of C/C++ libraries from
Python. We will have much more to say about Cython in Chapter 3.

• IPython – interactive interpreter shell

• Jinja2 – HTML and other templating tools; popular for web applications.

• Moinmoin – a standalone wiki, e.g., the one used by http://wiki.sagemath.org.

• PIL – Python imaging library (a “programmable Photoshop”)

• Pygments – HTML source code highlighting

• SQLalchemy – abstracts interface to most SQL databases and an object:relational
mapper.

• Sphinx – ReST documentation system for Python, which is used by many Python
projects (including Sage).

• Twisted – a networking framework; everything from web applications to email to
ssh servers are implemented in Twisted.

• ZODB – The Zope object-oriented database

• arpack – A sparse numerical linear algebra library.

• CVXopt – A library for solving convex (and other) optimization problems.

• Docutils – related to Python documentation

• easy-install – you can do easy_install foobar to install any of the over 13,000
Python packages available at http://pypi.python.org/.

• gd – very quickly draw png images with lines, arcs, etc.

• matplotlib – the canonical Python 2d graphics library
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• mpmath – arbitrary precision floating point mathematics special functions, nu-
merical integration, matrices, etc.

• NumPy – an n-dimensional array library, which is the fundamental package needed
for scientific computing with Python.

• pexpect – control command-line subprocesses

• rpy2 – fast compiled interface to the R statistics program, which is also included
in Sage.

• sage – the Sage library; mainly implements mathematical algorithms, especially
symbolic ones.

• sagenb – the Sage notebook web application (can be used standalone separate
from Sage).

• sagetex – allows you to embed Sage in LATEX documents

• SciPy – a large library of numerical functions that are useful in mathematics,
science, and engineering, including numerical integration, optimization, statistics,
differential equations, etc.

• setuptools – package for distributing and working with standalone python packages

• SymPy – a lightweight Python library for symbolic mathematics.

2.11 Exercise: Build Python from Source

If your computer operating system is Linux or OS X (with XCode installed), it is an
easy “exercise” to build the Python language from source. This is particularly relevant
if you want to understand Python more deeply, since you can change anything you want
in the interpreter itself, recompile, and try out the result!

First, go to http://python.org/download/ and download some version of Python.
I am using OS X (with XCode installed) and choose Python 3.2. In a few seconds I have
the file Python-3.2.tar.bz2 in my Downloads folder. Using the Terminal application,
I navigate to that folder, extract Python, configure and build it, which takes under 2
minutes (!).

deep:~ wstein$ cd Downloads

deep:Downloads wstein$ tar xf Python -3.2. tar.bz2

deep:Downloads wstein$ cd Python -3.2

deep:Python -3.2 wstein$ ./ configure; time make -j8

...

real 1m18 .284s

user 1m59 .552s

sys 0m9.980s

deep:Python -3.2 wstein$

And now let’s try it out:

deep:Python -3.2 wstein$ ./ python.exe

Python 3.2 (r32 :88445 , Mar 30 2011, 10:20:45)

[GCC 4.2.1 (Apple Inc. build 5666) (dot 3)] on darwin
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Type "help", "copyright", "credits" or "license" for more

information.

>>> 2 + 2

4

For fun, let’s change something in the core of Python, recompile, and observe our
change. On line 288 of Python-3.2/Objects/listobject.c, I insert a line that calls
the C printf function to print out some graffiti:

...

PyObject *

PyList_GetItem(PyObject *op, Py_ssize_t i)

{

printf("Hi Mom!\n"); /* I added this! */

if (! PyList_Check(op)) {

PyErr_BadInternalCall ();

...

I then type make again, wait a few seconds, and try out Python again:

deep:Python -3.2 wstein$ ./ python.exe

Python 3.2 (r32 :88445 , Mar 30 2011, 10:25:56)

[GCC 4.2.1 (Apple Inc. build 5666) (dot 3)] on darwin

Type "help", "copyright", "credits" or "license" for more

information.

Hi Mom!

...

Hi Mom!

>>> v = [1,2,3]

>>> v[0]

1

>>> v[’a’]

Traceback (most recent call last):

File "<stdin >", line 1, in <module >

Hi Mom!

Hi Mom!

Hi Mom!

Hi Mom!

Hi Mom!

TypeError: list indices must be integers , not str

Interestingly, the function PyList_GetItem appears to not be called when we use
an integer to access a list, but it is used when we try to access the list with anything
else.

For more information about how the Python source code is laid out, see the README
file, especially the section at the end called “Distribution structure”.
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Chapter 3

Cython

Cython is a compiled variant of the Python language, that can be used to write very,
very fast code for Sage, and makes it possible to efficiently use code from existing
C/C++ libraries in Sage, or write part of a program in C and the other part in Sage.

Additional references for learning Cython include the Cython Users Guide (see
http://docs.cython.org/src/userguide/) as you can, and the other Cython doc-
umentation (see http://docs.cython.org/).

3.1 An Example: Speeding up a Simple Function

Let’s start with a first simple example. We write a brute force Python program that
computes a double precision (53-bit) floating point approximation to

f(n) = sin(1) + sin(2) + sin(3) + · · ·+ sin(n− 1) + sin(n),

for n any positive integer. Let’s start with the most naive and straightforward imple-
mentation of this:

def python_sum_symbolic(n):

return float( sum(sin(n) for n in xrange(1,n+1)) )

As a sanity check for each of our implementations, we compute f(1000):

sage: python_sum_symbolic (1000)

0.813969634073164

Let’s benchmark it (these benchmarks were done under OS X on a 2.66GHz Intel
Core i7 laptop).

sage: timeit(’python_sum_symbolic (1000) ’)

5 loops , best of 3: 193 ms per loop

Next, try a bigger input. We use time instead, since that only runs the function
once, and this is going to take awhile:

sage: time python_sum_symbolic (10^4)

1.6338910217924467
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Time: CPU 15.88 s, Wall: 17.64 s

This is really, really, shockingly slow. By the end of this section, you’ll see how to
compute f(n) over 17 million times faster!

One reason python_sum_symbolic is so bad, is that the sin function is a “symbolic
function”, in that it keeps track of exact values, etc. For example,

sage: sum(sin(n) for n in xrange(1, 10+1))

sin (1) + sin (2) + sin (3) + sin (4) + sin (5) + sin (6) +

sin (7) + sin (8) + sin (9) + sin (10)

So the python_sum_symbolic function is computing a huge formal sum, then con-
verting each summand to a float, and finally adding them up. This is wasteful. Our next
implementation using a different sin function, one that is standard with Python, which
immediately turns its input into a float (53-bit double precision number), computes sin,
and returns the result as a float.

def python_sum(n):

from math import sin

return sum(sin(i) for i in xrange(1, n+1))

How does this do?

sage: python_sum (1000) # right answer

0.8139696340731659

sage: timeit(’k = python_sum (1000) ’)

625 loops , best of 3: 185 microseconds per loop

sage: timeit(’k = python_sum (10^4) ’)

125 loops , best of 3: 2.07 ms per loop

Thus python_sum is over one thousand times faster than python_sum_symbolic!

sage: 193e-3 / 185e-6

1043.24324324324

sage: 15.88 / 2.07e-3

7671.49758454106

Perhaps there is some win in not using sum?

def python_sum2(n):

from math import sin

s = float (0)

for i in range(1, n+1):

s += sin(i)

return s

Try it out: nope, no win at all (!):

sage: timeit(’k = python_sum2 (10^4) ’)

125 loops , best of 3: 2.11 ms per loop
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Next we try using Cython to make our code faster. Note that our “rewritten”
program looks identical—the only difference so far is that we told Sage to compile the
program using Cython by putting %cython at the beginning of the block (if you are
using the command line instead of the notebook, put the code without %cython in a file
foo.pyx, then type load foo.pyx.)

%cython

def cython_sum(n):

from math import sin

return sum(sin(i) for i in xrange(1, n+1))

If you evaluate the above code in the Sage notebook, you’ll see that two linked files
appear after the input cell:

1. A file that ends in .c: this is the C program that the above code got turned into.
This is compiled and linked automatically into the running copy of Sage.

2. A file that ends in .html: this is an annotated version of the above Cython program;
double click on a line to see the corresponding C code.

Is the Cython program any faster?

sage: cython_sum (1000) # it works

0.8139696340731659

sage: timeit(’cython_sum (1000) ’)

625 loops , best of 3: 144 microseconds per loop

sage: timeit(’k = cython_sum (10^4) ’)

625 loops , best of 3: 1.52 ms per loop

It’s faster, but only about 30% faster. This is very typical of what you should expect
by simply putting %cython above Python code.

sage: 2.07/1.52

1.36184210526316

The Cython program is not that much faster, because the computer is doing es-
sentially the same thing in both functions. In the case of python_sum, the Python
interpreter is carrying out a sequence of operations (calling functions in the Python C
library), and in the case of cython_sum, a C program is running (the compiled Cython
module), which is simply calling pretty much the same functions in the Python C library.

To get a further speedup, we declare certain variables to have C data types and use
a C version of the sin function.

%cython

cdef extern from "math.h":

double sin(double)

def cython_sum_typed_lib(long n):

cdef long i

return sum(sin(i) for i in range(1, n+1))

The differences are that we declared n to be long and we added a new line cdef long i,
which declares i to also be long. This tells Cython to treat n and i as being of data
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type long, which is a 32 or 64-bit integer, depending on the computer you’re using.
This is the same as the long datatype in C. We also call the sin function in the math
C library. Let’s see if this is faster.

sage: cython_sum_typed_lib (1000)

0.8139696340731659

sage: timeit(’cython_sum_typed_lib (1000) ’)

625 loops , best of 3: 85.2 s per loop

sage: timeit(’cython_sum_typed_lib (10^4) ’)

625 loops , best of 3: 951 s per loop

sage: 2.07e-3 / 778e-6

2.66066838046272

So now our coding is beating the pure Python code by a factor of nearly 3.
In general, you have to be more careful, e.g., long integers overflow. They may be

either 32 or 64-bit depending on the computer you are using. The following example
illustrates overflow:

%cython

def longmul(long a, long b):

return a*b

Now let’s try it:

sage: longmul (2^10, 2^20)

1073741824

sage: longmul (2^20, 2^50) # overflows!

0

sage: 2^20 * 2^50

1180591620717411303424

For our next optimization, we use a for loop instead of the sum command:

%cython

cdef extern from "math.h":

double sin(double)

def cython_sum_typed_lib_loop(long n):

cdef long i

cdef double s = 0

for i in range(1, n+1):

s += sin(i)

return s

In Cython, this is really worth it.

sage: cython_sum_typed_lib_loop (1000)

0.8139696340731659

sage: timeit(’cython_sum_typed_lib_loop (10^4) ’)

625 loops , best of 3: 298 s per loop

sage: 2.07e-3 / 298e-6

6.94630872483221
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We thus obtain a speedup of a factor of about 7 by switching from Python to Cython,
and implementing exactly the same algorithm. Way under the hood, the same sin

function (providing by the math library on the operating system) is being called, but
the Cython version of the function avoids a lot of overhead.

Another approach to this particular numerical problem is to use the numpy library,
which allows one to evaluate a function on all entries in an array, and sum the entries.
This is called “vectorization”. Here’s what we get in this particular example:

def sum_numpy(n):

import numpy

return sum(numpy.sin(numpy.array(range(1, n+1))))

Let’s try it out:

sage: sum_numpy (1000)

0.81396963407316592

sage: timeit(’sum_numpy (10^4) ’)

625 loops , best of 3: 1.33 ms per loop

sage: 2.07e-3 / 1.33e-3

1.55639097744361

So for this benchmark, our Numpy implementation is slightly better than pure Python,
but Cython is still much faster.

Finally, we try a different algorithm, both using Python and Cython. The symbolic
capabilities of Sage can be used to find closed form expressions for certain formal sums.

sage: var(’i, n’)

sage: f = sum(sin(i), i, 1, n). full_simplify (); f

1/2*(( cos (1) - 1)* sin(n*arctan(sin (1)/ cos (1))) +

sin (1)* cos(n*arctan(sin (1)/ cos (1))) - sin (1))/( cos (1) - 1)

Thus (and I had no idea before trying this),

f(n) =
(cos (1)− 1) sin

(
n arctan

(
sin(1)
cos(1)

))
+ sin (1) cos

(
n arctan

(
sin(1)
cos(1)

))
− sin (1)

2 (cos (1)− 1)

Using this, we can give an algorithm to compute this sum that is much faster than
anything above, and scales much better as well to larger n.

def sum_formula(n):

from math import sin , cos , atan as arctan

return (1/2*(( cos (1) - 1)* sin(n*arctan(sin (1)/ cos (1))) +

sin (1)* cos(n*arctan(sin (1)/ cos (1))) - sin (1))/( cos (1) - 1))

How does it do?

sage: sum_formula (1000)

0.8139696340731664

sage: timeit(’sum_formula (10^4) ’)

625 loops , best of 3: 36.5 s per loop

sage: 2.07e-3 / 36.5e-6

56.7123287671233
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Finally, we implement the closed formula, but instead in Cython.

%cython

cdef extern from "math.h":

double sin(double)

double cos(double)

double atan(double)

def sum_formula_cython(double n):

return (.5*(( cos (1) - 1)* sin(n*atan(sin (1)/ cos (1))) +

sin (1)* cos(n*atan(sin (1)/ cos (1))) - sin (1))/( cos (1) - 1))

This is 40 times faster than our Python implementation!

sage: sum_formula_cython (1000)

0.8139696340731664

sage: timeit(’sum_formula_cython (10^4) ’)

625 loops , best of 3: 906 ns per loop

sage: 36.5e-6 / 906e-9

40.2869757174393

And it is over 2000 times faster than python_sum.

sage: 2.07e-3 / 906e-9

2284.76821192053

It is a whopping 17 million times faster than our first attempt!

sagre: 15.88 / 906e-9

1.75275938189845 e7

3.2 Using External C/C++ Code

Cython is absolutely critical to the design of Sage, and potentially very important to
your own work, because it makes it possible to efficiently make use of data types and
functions defined in any C/C++ library. Since there is an enormous amount of useful,
fast, debugged C/C++ code out there, Cython gives your Sage and Python programs
access to vast amounts of useful capabilities. Also, when used correctly, there is no
overhead in calling out to the C libraries, unlike the situation with SWIG, ctypes, and
many other approaches to writing C library wrappers.

3.2.1 Simple random example

Here’s a first simple example. Type man random on the command line (or Google it) to
find out about the random C library function:

RANDOM (3) BSD Library Functions Manual RANDOM (3)

NAME

initstate , random , setstate , srandom , srandomdev -- better
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random number generator; routines for changing generators

LIBRARY

Standard C Library (libc , -lc)

SYNOPSIS

#include <stdlib.h>

char *

initstate(unsigned seed , char *state , size_t size);

long

random(void);

...

Despite random being a function defined in the standard C library, we can still call
it from Cython, as follows:

%cython

cdef extern from "stdlib.h": # (1)

long random () # (2)

def random_nums(int n): # (3)

cdef int i # (4)

v = [random () for i in range(n)] # (5)

return v

Let’s try it out:

sage: random_nums (5)

[1315705257 , 1147455227 , 1571270137 , 1106977565 , 1805149207]

sage: timeit(’v = random_nums (10^5) ’)

125 loops , best of 3: 5.56 ms per loop

It’s interesting to see how this compares to pure Python. Here’s the same program
in Python:

%python

import random

k = 2**31 -1

def py_random_nums(n):

return [random.randint(0,k) for i in range(n)]

So the speedup is by a factor of nearly 50:

sage: py_random_nums (5)

[317567506 , 1289482476 , 1766134327 , 1216261810 , 1427493671]

sage: timeit(’v = random_nums (10^5) ’)

5 loops , best of 3: 251 ms per loop

sage: 251/5.56

45.1438848920863

Finally we explain the above code line by line. (TODO)
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3.2.2 Adding rational numbers using MPIR

We next consider a more mathematical example: arithmetic with arbitrary precision
rational numbers. The MPIR C library (which is included with Sage, but can also be
downloaded separately for free for any standard operating system from http://mpir.

org/) provides highly optimized arithmetic with arbitrary precision integers and rational
numbers.1 We could make use of MPIR by reading the documentation for MPIR and
using cdef extern as above. Fortunately, all of the necessary cdef extern declarations
needed to use MPIR are already declared in Sage. You can view all the declarations
from the notebook by navigating to <url of notebook server>/src/libs/gmp.

Let’s use MPIR directly to create two rational numbers and add them together. The
code below is complicated and illustrates many issues and techniques, so we will explain
it in great depth. Once you understand this, you can deal with many issues that will
come up with Cython.

%cython

from sage.libs.gmp.all cimport * # (1)

def add_rationals(bytes a, bytes b): # (2)

cdef mpq_t x, y, z # (3)

mpq_init(x); mpq_init(y); mpq_init(z) # (4)

mpq_set_str(x, a, 10) # base 10 string # (5)

mpq_set_str(y, b, 10)

mpq_add(z, x, y) # (6)

cdef int n = (mpz_sizeinbase (mpq_numref(z), 10) # (7)

+ mpz_sizeinbase (mpq_denref(z), 10) + 3)

cdef char* s = <char*>sage_malloc(sizeof(char)*n) # (8)

if not s: raise MemoryError # (9)

cdef bytes c = mpq_get_str(s, 10, z) # (10)

mpq_clear(x); mpq_clear(y); mpq_clear(z) # (11)

sage_free(s) # (12)

return c

Now let’s try it out:

sage: add_rationals(’2/3’, ’ -5/21’)

’3/7’

sage: 2/3 - 5/21

3/7

sage: add_rationals(’1/29048203984092834823049 ’,

’ -394/29302938402384092834 ’)

’ -11444963066794174536188472/851197732045760533660225724673976778930866 ’

Timings suggest we didn’t mess up:

sage: timeit("add_rationals (’2/3’, ’-5/21’)")

625 loops , best of 3: 1.29 s per loop

sage: timeit(’2/3 - 5/21’)

625 loops , best of 3: 2.16 s per loop

Here’s a simplistic check that we probably didn’t screw up and introduce any memory
leaks. (Go up to the code and comment out some frees to see how this changes.)

1MPIR and GMP http://gmplib.org/ are basically the same for our discussion; technically they
are “forks” of each other, but export essentially the same functions.
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sage: print get_memory_usage ()

sage: timeit("add_rationals ( ’9012038409238411/13 ’ ,

’ -4/9082309482309487 ’)",number =10^6)

sage: get_memory_usage ()

917.5625

1000000 loops , best of 3: 1.72 s per loop

917.5625

Finally, we will go line by line through the code and explain exactly what is going
on and why. TODO

3.3 Important Cython Language Constructions

In this section we systematically go through the most important standard Cython lan-
guage constructions. We will not talk about using numpy from Cython, dynamic mem-
ory allocation, or subtleties of the C language in this section. Instead we cover declaring
and using cdef’d variables, explicit type casts, declaring external data types and func-
tions, defining new Cython cdef’d functions, and declaring new Cython cdef’d classes
that can have C attributes.

3.3.1 Declaring Cython Variables Using cdef

cdef type_name variable_name1 , variable_name2 , ...

The single most important statement that Cython adds to Python is

cdef type_name

This allows you to declare a variable to have a type. The possibilities for the type
include:

• C data type: int, float, double, char. Each can be modified by: short, long, signed,
unsigned.

• Certain Python types, including: list, dict, str, object (=Python object), etc.

• Name of a known cdef class (see below). You may have to cimport the class.

• More complicated C/C++ data types: struct, C++ class, typedef, etc., that have
been declared using some other method described below.

%cython

def C_type_example ():

# ^ = exclusive or -- no preparsering in Cython!

cdef int n=5/3, x=2^3

cdef long int m=908230948239489394

cdef float y=4.5969

cdef double z=2.13

cdef char c=’c’

cdef char* s="a C string"

print n, x, m, y, z, c, s
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When we run the above function, we get the following. Note the lack of preparsing, and
that the char variable c is treated as a number.

sage: C_type_example ()

1 1 908230948239489394 4.59689998627 2.13 99 a C string

%cython

def type_example2(x, y):

cdef list v

cdef dict z

v = x

z = y

sage: type_example2 ([1,2], {’a’:5})

sage: type_example2 (17, {’a’:5})

Traceback (most recent call last):

...

TypeError: Expected list , got sage.rings.integer.Integer

sage: type_example2 ([1,2], 17)

Traceback (most recent call last):

...

TypeError: Expected dict , got sage.rings.integer.Integer

We can also define a new Cython cdef’d class and use that type in cdef:

%cython

cdef class MyNumber:

cdef int n

def __init__(self , k):

self.n = k

def __repr__(self):

return repr(self.n)

def type_example3(MyNumber z):

cdef MyNumber w = MyNumber (5)

print z, w

Use it:

sage: type_example3(MyNumber (10))

10 5

sage: type_example3 (10)

Traceback (most recent call last):

...

TypeError: Argument ’z’ has incorrect type ...

Terrifying caveat!: Any type can also be None, which will cause horrible segfaults.
Use not None to deal with this.

sage: type_example3(None) # this could be very bad

None 5
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This is how to be safe:

%cython

cdef class MyNumber:

cdef int n

def __init__(self , k):

self.n = k

def __repr__(self):

return repr(self.n)

def type_example4(MyNumber z not None):

cdef MyNumber w = MyNumber (5)

print z, w

Now None is rejected:

sage: type_example4(MyNumber (4))

4 5

sage: type_example4(None)

Traceback (most recent call last):

...

TypeError: Argument ’z’ has incorrect type ...

For the Cython source code of Sage integers, in the Sage library see rings/integer.pxd
and rings/integer.pyx. Also, browse libs/gmp/ for the definition of functions such
as mpz_set below.

%cython

from sage.rings.integer cimport Integer # note the cimport!

def unsafe_mutate(Integer n, Integer m):

mpz_set(n.value , m.value)

sage: n = 15

sage: print n, id(n)

15 54852752

sage: unsafe_mutate(n, 2011)

sage: print n, id(n)

2011 54852752

3.3.2 Explicit casts

<data_type > foo

If you need to force the compiler to treat a variable of one data type as another, you
have to use an explicit cast. In Java and C/C++ you would use parenthesis around a
type name, as follows:

int i = 1;

long j = 3;

i = (int)j;
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In Cython, you use angle brackets (note: in Cython this particular cast isn’t strictly
necessary to get the code to compile, but in Java it is):

%cython

cdef int i = 1

cdef long j = 3

i = <int > j

print i

Here’s an example where we convert a Python string to a char* (i.e., a pointer to
an array of characters), then change one of the characters, thus mutating an immutable
string.

%cython

def unsafe_mutate_str(bytes s, n, c):

cdef char* t = <char*>s

t[n] = ord(c)

Try it out:

sage: s = ’This is an immutable string.’

sage: print s, id(s), hash(s)

This is an immutable string. 72268152 -5654925717092887818

sage: unsafe_mutate_str(s, 9, ’ ’)

sage: unsafe_mutate_str(s, 11, ’ ’)

sage: unsafe_mutate_str(s, 12, ’ ’)

print s, id(s), hash(s)

This is a mutable string. 72268152 -5654925717092887818

sage: hash(’This is a mutable string.’)

-7476166060485806082

3.3.3 Declaring External Data Types and Functions

In order for Cython to make use of a function or data type defined in external C/C++
library, Cython has to explicitly be told what the input and output types are for that
function and what the function should be called. Cython will then generate appropriate
C/C++ code and conversions based on these assumptions. There are a large number
of files in Sage and Cython itself that declare all the functions provided by various
standard libraries, but sometimes you want to make use of a function defined elsewhere,
e.g., in your own C/C++ library, so you have to declare things yourself. The purpose of
the following examples is to illustrate how to do this. It is also extremely useful to look
at the Sage library source code for thousands of additional nontrivial working examples.

cdef extern from "filename.h":

declarations ...

The following examples illustrates several different possible declarations. We’ll de-
scribe each line in detail. This first example declares a single type of round function on
doubles – it’s as straightforward as it gets.

%cython
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cdef extern from "math.h":

double round(double)

def f(double n):

return round(n)

Try it out:

sage: f(10.53595)

11.0

Now suppose we want a version of round that returns a long. By consulting the man
page for round, we find that there is a round function declared as follows:

long int lround(double x);

We can declare it exactly like the above, or we can use a C “name specifier”, which
let’s us tell Cython we want to call the function round in our Cython code, but when
Cython generates code it should actually emit lround. This is what we do below.

%cython

cdef extern from "math.h":

long int round "lround"(double)

def f(double n):

return round(n)

sage: f(10.53595)

11

Another case when using C name specifiers is useful if you want to be able to call
both a C library version of a function and a builtin Python function with the same
name.

%cython

cdef extern from "stdlib.h":

int c_abs "abs"(int i)

def myabs(n):

print abs(n)

print c_abs(n)

Now use it:

sage: myabs (-10)

10

10

We can also declare data types and variables using cdef extern. To write the
code below, I used the man command on my computer several times on each referenced
function. I knew the relevant functions because I read a book on the C programming
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language when I was a freshman; learning the basics of the C programming language
and standard libraries is a very good idea if you want to be able to make effective use
of Cython... or computers in general, since most systems programming is done in C.

Coming up with the declarations below is a little bit of an art form, in that they are
not exactly what is given from the man pages, though they are close. Just realize that
the declarations you give here do exactly one thing: they inform Cython about what
C code it should generate, e.g., it will convert the string "w" below to a char* before
calling the fopen function. That’s it, that’s all the declarations do; they do not have
to be perfect. You should evaluate this code in the notebook and click on the .html file
that is produced, then look at the corresponding C code, to see what I mean.

%cython

cdef extern from "stdio.h":

# We use void* since we don’t care about structure of FILE

ctypedef void* FILE

FILE* fopen(char* filename , char* mode)

int fclose(FILE *stream)

int fprintf(FILE *stream , char *format , ...)

def f(filename ):

cdef FILE* file

file = fopen(filename , "w")

fprintf(file , "Hi Mom!")

fclose(file)

Let’s try create create and write to a file using the above code:

sage: f(’foo.txt’)

sage: print open(’foo.txt’).read()

Hi Mom!

It’s unlikely you would ever want to access the above functions from Cython, since
they are already nicely wrapped by Python itself. Nontheless, if you need total control
and speed when doing file access, you have it.

3.3.4 Defining New Cython Functions

In addition to using the cdef keyword to define variables as above, we can also define
functions. These are like Python functions, but you can declare the input types and the
return type explicitly, and calling them is then blazingly fast, as compared to calling
regular Python functions. (Remember, most of the point of Cython is speed, speed,
speed! The other point of Cython is that you can call C/C++ functions from Cython;
that is less relevant if you don’t care about speed, because there is something else called
ctypes that allows you to do that directly from Python.)

cdef return_type function_name(type1 input1 , type2 input2 ...):

# body of function

Here is an example, where we create both a cdef and regular function to add two
int’s. Note that the return type of the cdef function can itself by a C data type, but
the same is not true for the return type of a Python function. We will see below that
the cdef function is dramatically faster, since there is very little overhead in calling it.
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%cython

cdef int add_cython(int a, int b):

return a + b

def add_python(int a, int b):

return a + b

def f(int n):

cdef int i, s=0

for i in range(n):

s += add_cython(s, i)

return s

def g(int n):

cdef int i, s=0

for i in range(n):

s += add_python(s, i)

return s

Let’s test it:

sage: timeit(’f(10^6) ’)

625 loops , best of 3: 595 s per loop

sage: timeit(’g(10^6) ’)

5 loops , best of 3: 94.6 ms per loop

sage: 94.6/.595

158.991596638655

Indeed, we find that the cdef’d function is 159 times faster!
Notice that add_python is callable from the interpreter, but add_cython isn’t:

sage: add_python (2,8)

10

sage: add_cython (2,8)

Traceback (most recent call last):

...

NameError: name ’add_cython ’ is not defined

The cpdef keyword lets us define a function that is somewhere intermediate between
a Python function and a cdef’d function. If we use cpdef instead of cdef then everything
is almost identical, except the cpdef’d method can also be called from Python. This is
often mainly useful for testing and general usability. The cpdef method will be slightly
slower though. In this example, it is about 4 times slower.

cpdef return_type function_name(type1 input1 , type2 input2 ...):

# function body

Here is the example:

%cython

cpdef int add_cython2(int a, int b):
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return a + b

def f2(int n):

cdef int i, s=0

for i in range(n):

s += add_cython2(s, i)

return s

Now test it out:

sage: timeit(’f2 (10^6) ’)

125 loops , best of 3: 2.63 ms per loop

sage: 2.63/.595

4.42016806722689

sage: add_cython2 (2,8) # the function is available

10

3.3.5 Defining New Cython Classes

One of the most powerful features of Cython is that you can define new classes that
have C-level attributes and cdef’d methods. The cdef’d attributed and function calls
are very, very fast to use.

cdef class ClassName(base_class ):

cdef type_name variable

# ...

# Then functions mostly like a Python class , except

# you can include cdef’d methods with input and output

# types as in the previous section.

# ...

# There are some subtleties with special methods such

# as __add__ and __hash__; see the Cython documentation.

Note that cdef’d classes in Cython can have at most one base class; there is no
support for multiple inheritance. This is a basic design decision with Cython, and is
very unlikely to ever change. You can of course create non-cdef’d classes in Cython that
have multiple inheritance.

Here is an example in which we create a Cython class that wraps a Python string,
and provides the ability of changing the entries of the string:

%cython

cdef class StringMutator:

cdef bytes s # cdef’s attribute

def __init__(self , bytes s):

self.s = s

def __setitem__(self , int i, bytes a):

if i < 0 or i >= len(self.s): raise IndexError

if len(a) != 1: raise ValueError

(<char*> self.s)[i] = (<char*>a)[0]

def __repr__(self): return self.s

def __str__(self): return "%s"%self.s
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sage: s = "Hello World"

sage: t = StringMutator(s)

sage: t[4] = ’X’

sage: print s

HellX World

sage: print t

HellX World

Notice that setting an entry is fast:

sage: timeit("t[4]=’X’", number =10^5)

100000 loops , best of 3: 226 ns per loop

We did include some bounds checking to avoid crashes:

sage: t[100] = ’x’

Traceback (most recent call last):

...

IndexError

We can also convert from mutable string back and get a new string:

sage: m = str(t); m

’HellX World’

sage: t[0] = ’X’; t

XellX World

sage: m

’HellX World’

3.4 Numpy and Cython

<h1 style="text-align: center;">Lecture 12: Numpy + Cython = AWESOME</h1>

<p>This lecture is about how to efficiently combine Numpy and Cython to write fast numerical code.</p>

<p>We will focus on the problem of computing the <em>standard deviation</em>&nbsp;of a list of floating point numbers. &nbsp; Let $x_1, \ldots, x_n$ be a list of $n$ real numbers, and let $$\mu = \frac{1}{n}\sum_{i=1}^n x_i$$ be their mean. &nbsp; We define their standard deviation to be $$\sqrt{\frac{1}{n}\sum_{i=1}^n (x_i - \mu)^2}.$$</p>

<p><strong>Note</strong>: In statistics it is common to divide by $n-1$ instead of $n$ when computing the standard deviation of a sample and using it to estimate the standard deviation of a population. &nbsp;We will not do this, since our goal today is illustrating programming techniques, not learning techniques of statistics.</p>

<p>&nbsp;</p>

<p><strong>Running Example:</strong> Compute the standard deviation of a list of 64-bit floating point numbers. &nbsp; Our data set is computed using the random.random method, which generates numbers <strong>uniformly</strong> between 0 and 1.</p>

{{{id=3|

set_random_seed(0)

import random

v = [random.random() for _ in range(10^5)]

///

}}}

{{{id=84|

v[:20]

///

[0.43811732887872634, 0.78344784289564662, 0.7917672531341533, 0.43546157784257289, 0.99879630143646858, 0.21470214570255253, 0.52818002353940696, 0.51667692205628102, 0.67726646422202585, 0.92183464863760212, 0.54553592061123968, 0.2143866131543859, 0.90130600825854523, 0.71144055233831971, 0.080614713472959898, 0.81024524942438758, 0.8403186842969067, 0.26527690630696821, 0.9755892062984004, 0.94353224947123771]
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}}}

<p>First we write a naive straightforward implementation of computation of the standard deviation.</p>

{{{id=9|

def my_std(z):

mean = sum(z)/len(z)

return sqrt(sum((x-mean)^2 for x in z)/len(z))

///

}}}

{{{id=10|

time my_std(v)

///

0.28871143425255896

Time: CPU 0.06 s, Wall: 0.06 s

}}}

{{{id=11|

timeit(’my_std(v)’, number=10)

///

10 loops, best of 3: 64.8 ms per loop

}}}

<p>Next we try the std function in Sage, which was implemented by UW undergrad Andrew Hou as part of paid work he did on Sage after he took Math 480.</p>

{{{id=1|

time std(v, bias=True)

///

0.28871143425255896

Time: CPU 0.03 s, Wall: 0.03 s

}}}

{{{id=12|

timeit(’std(v, bias=True)’)

///

25 loops, best of 3: 26.4 ms per loop

}}}

<p>Next we try Numpy, which is much faster than the above.</p>

{{{id=7|

import numpy

v_numpy = numpy.array(v, dtype=numpy.float64)

///

}}}

{{{id=14|

v_numpy.dtype

///
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dtype(’float64’)

}}}

{{{id=21|

v_numpy.std()

///

0.28871143425255896

}}}

{{{id=6|

timeit(’v_numpy.std()’)

///

625 loops, best of 3: 1.25 ms per loop

}}}

{{{id=76|

22.5/1.25

///

18.0000000000000

}}}

<p>Sage also has code for working with TimeSeries, which happens to have a method for computing the standard deviation. &nbsp;It is a couple of times faster than Numpy. &nbsp;</p>

{{{id=16|

v_stats = stats.TimeSeries(v)

///

}}}

{{{id=85|

v_stats.variance??

///

}}}

{{{id=20|

v_stats.standard_deviation(bias=True)

///

0.28871143425255896

}}}

{{{id=15|

timeit(’v_stats.standard_deviation(bias=True)’)

///

625 loops, best of 3: 240 s per loop

}}}

<p>The TimeSeries code is nearly optimal. &nbsp;A TimeSeries is represented by a contiguous array of double’s, and the code for computing standard deviation is very straightforward Cython that maps directly to C. &nbsp;(I wrote it, by the way.)</p>

{{{id=17|

1.25/.236

///
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5.29661016949153

}}}

<p><strong>Goal: </strong>Write a function that computes the standard deviation of a numpy array as quickly as stats.TimeSeries does, hence is faster than Numpy itself.</p>

<p>First approach: Use numpy "vectorized operations". &nbsp;This doesn’t help at all (and is also wasteful of memory, by the way).</p>

{{{id=86|

def std_numpy1_oneline(v):

return math.sqrt(((v - v.mean())**2).mean())

///

}}}

{{{id=23|

def std_numpy1(v):

m = v.mean() # mean of entries

w = v - m # subtracts m from each entry: "broadcasting"

w2 = w**2 # squares each entry componentwise.

return math.sqrt(w2.mean())

///

}}}

{{{id=88|

get_memory_usage()

///

864.90625

}}}

{{{id=89|

w = v_numpy**2

///

}}}

{{{id=90|

get_memory_usage()

///

865.671875

}}}

{{{id=19|

std_numpy1(v_numpy)

///

0.28871143425255896

}}}

{{{id=87|

std_numpy1_oneline(v_numpy)

///

0.28871143425255896

}}}
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{{{id=18|

timeit(’std_numpy1(v_numpy)’)

///

625 loops, best of 3: 1.25 ms per loop

}}}

<p>Let’s see how the time gets spent between each step. &nbsp;It turns out to be about equally spent among each line.</p>

{{{id=34|

m = v_numpy.mean()

timeit(’v_numpy.mean()’)

///

625 loops, best of 3: 140 s per loop

}}}

{{{id=37|

w = v_numpy - m

timeit(’v_numpy - m’)

///

625 loops, best of 3: 241 s per loop

}}}

{{{id=38|

w2 = w**2

timeit(’w**2’)

///

625 loops, best of 3: 157 s per loop

}}}

{{{id=36|

m2 = w2.mean()

timeit(’math.sqrt(w2.mean())’)

///

625 loops, best of 3: 143 s per loop

}}}

{{{id=91|

sqrt(2)

///

sqrt(2)

}}}

{{{id=92|

math.sqrt(2)

///

1.4142135623730951

}}}

{{{id=93|

a = float(2)
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timeit(’sqrt(a)’, number=10^5)

///

100000 loops, best of 3: 589 ns per loop

}}}

{{{id=94|

timeit(’math.sqrt(a)’, number=10^5)

///

100000 loops, best of 3: 216 ns per loop

}}}

{{{id=39|

///

}}}

<p>Next try Cython with no special type declarations. &nbsp;Not surprisingly, this does not help in the least bit.</p>

{{{id=28|

%cython

import math

def std_numpy2(v):

m = v.mean() # mean of entries

w = v - m # subtracts m from each entry: "broadcasting"

w2 = w**2 # squares each entry componentwise.

return math.sqrt(w2.mean())

///

}}}

{{{id=25|

std_numpy2(v_numpy)

///

0.28871143425255896

}}}

{{{id=24|

timeit(’std_numpy2(v_numpy)’)

///

625 loops, best of 3: 1.3 ms per loop

}}}

<p>Next try Cython with special support for Numpy. &nbsp;This gets powerful... as we will see.</p>

{{{id=30|

%cython

from numpy cimport ndarray

import math

def std_numpy3(ndarray v not None):
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m = v.mean() # mean of entries

w = v - m # subtracts m from each entry: "broadcasting"

w2 = w**2 # squares each entry componentwise.

return math.sqrt(w2.mean())

///

}}}

{{{id=96|

std_numpy3(None)

///

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

File "_sage_input_68.py", line 10, in <module>

exec compile(u’open("___code___.py","w").write("# -*- coding: utf-8 -*-\\n" + _support_.preparse_worksheet_cell(base64.b64decode("c3RkX251bXB5MyhOb25lKQ=="),globals())+"\\n"); execfile(os.path.abspath("___code___.py"))’ + ’\n’, ’’, ’single’)

File "", line 1, in <module>

File "/tmp/tmpXdvvgn/___code___.py", line 2, in <module>

exec compile(u’std_numpy3(None)’ + ’\n’, ’’, ’single’)

File "", line 1, in <module>

File "_sagenb_flask_sage_notebook_sagenb_home_openidSfmMv1OuVE_44_code_sage70_spyx_0.pyx", line 8, in _sagenb_flask_sage_notebook_sagenb_home_openidSfmMv1OuVE_44_code_sage70_spyx_0.std_numpy3 (_sagenb_flask_sage_notebook_sagenb_home_openidSfmMv1OuVE_44_code_sage70_spyx_0.c:713)

def std_numpy3(ndarray v not None):

TypeError: Argument ’v’ has incorrect type (expected numpy.ndarray, got NoneType)

}}}

{{{id=33|

std_numpy3(v_numpy)

///

0.28871143425255896

}}}

{{{id=42|

timeit(’std_numpy3(v_numpy)’)

///

625 loops, best of 3: 1.7 ms per loop

}}}

<p>Look at Cython + Numpy documentation (by Googling "cython numpy"), and we learn that if we declare v a little more precisely, then we get fast direct access to the underlying elements in v.</p>

{{{id=46|

%cython

cimport numpy as alex

import math

def std_numpy4a(alex.ndarray[alex.float64_t, ndim=1] v not None):

cdef Py_ssize_t i

cdef Py_ssize_t n = v.shape[0] # how many entries

# Compute the mean
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cdef double m # = 0

for i in range(n):

m += v[i]

m /= n

# just doing the mean for now...

return m

///

}}}

{{{id=45|

std_numpy4a(v_numpy)

///

0.49896857465357608

}}}

<p>Timing looks good...</p>

{{{id=44|

timeit(’std_numpy4a(v_numpy)’)

///

625 loops, best of 3: 376 s per loop

}}}

{{{id=79|

///

}}}

<p>Let’s finish it the function and see how it compares.</p>

{{{id=56|

%cython

cimport numpy as np

cdef extern:

double sqrt(double)

def std_numpy4b(np.ndarray[np.float64_t, ndim=1] v):

cdef Py_ssize_t i

cdef Py_ssize_t n = v.shape[0] # how many entries

# Compute the mean

cdef double m = 0

for i in range(n):

m += v[i]

m /= n

# Compute variance

cdef double s = 0

for i in range(n):
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s += (v[i] - m)**2

return sqrt(s/n)

///

}}}

{{{id=55|

std_numpy4b(v_numpy)

///

0.28871143425255896

}}}

{{{id=63|

timeit(’std_numpy4b(v_numpy)’)

///

625 loops, best of 3: 274 s per loop

}}}

{{{id=54|

timeit(’v_stats.standard_deviation(bias=True)’)

///

625 loops, best of 3: 238 s per loop

}}}

{{{id=58|

timeit(’v_numpy.std()’)

///

625 loops, best of 3: 1.27 ms per loop

}}}

<p>Very nice!!</p>

{{{id=60|

///

}}}

<p>Finally, we try again, after disabling bounds checking. &nbsp; This is even better; almost as good as stats.TimeSeries.</p>

{{{id=50|

%cython

cimport numpy as np

cdef extern:

double sqrt(double)

# turn of bounds-checking for entire function

cimport cython

@cython.boundscheck(False)

def std_numpy5a(np.ndarray[np.float64_t, ndim=1] v):
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cdef Py_ssize_t i

cdef Py_ssize_t n = v.shape[0] # how many entries

# Compute the mean

cdef double m = 0

for i in range(n):

m += v[i]

m /= n

# Compute variance

cdef double s = 0

for i in range(n):

s += (v[i] - m)**2

return sqrt(s/n)

///

}}}

{{{id=49|

timeit(’std_numpy5a(v_numpy)’)

///

625 loops, best of 3: 227 s per loop

}}}

{{{id=43|

timeit(’v_stats.standard_deviation(bias=True)’)

///

625 loops, best of 3: 240 s per loop

}}}

<h1><span style="color: #800000;">Yeah, we did it!! &nbsp;</span>&nbsp;</h1>

<p>For smaller input, interestingly we get a massive win over Numpy. &nbsp; If you were, e.g., computing a sliding window of standard deviations (say) for a time series, this would be important.</p>

{{{id=65|

a = numpy.array([1,2,3,4], dtype=float); a

///

array([ 1., 2., 3., 4.])

}}}

{{{id=67|

timeit(’std_numpy5a(a)’)

///

625 loops, best of 3: 483 ns per loop

}}}

{{{id=68|

timeit(’a.std()’)

///

625 loops, best of 3: 24.4 s per loop

}}}

{{{id=69|

b = stats.TimeSeries(a)
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timeit(’b.standard_deviation(bias=True)’)

///

625 loops, best of 3: 534 ns per loop

}}}
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Chapter 4

Resources for Solving
Problems Using Sage

4.1 The Sage Library

You can do a Google search on all of the Sage documentation, web pages and discussion
groups all in one go by visiting the webpage http://sagemath.org/search.html and
typing in your search, then waiting as the page dynamically updates.

Of course you can find links to the standard Sage documentation, including the
tutorial, constructions guide, FAQ, developer’s guide, and reference manual at http:

//sagemath.org/help.html. There are also links to videos and many other helpful
materials there.

There are numerous quick reference cards at http://wiki.sagemath.org/quickref
which list numerous Sage commands on a single page in specific areas such as Calculus
and Linear Algebra. Much work went into creating these cards, and they are an excellent
resource to print out.

If you want to search the documentation of the functions defined in the Sage library,
use the search_doc command. This just does a straight search through all the doc-
strings of the functions in the HTML version of the Sage documentation, without any
prebuilt index. It is written in Python and uses regularly expressions on the source
code to extract docstrings out and find your search terms. The search_doc command
works on both the command line and in the notebook. On the command line it displays
one line from each HTML document, so is tedious to actually use. In the notebook, it
displays the relevant html documents, which links to each. If you click on a link, you’ll
go to an interactive version of the relevant section of the documentation, where you
can search that page for relevant text. Watch out, since stupidly you then have to use
the back button to get back to your worksheet – it would be better if the html output
of search_doc used <a target="_new" href="...">; until this is changed, you may
want to right click and select ”open in new tab”.

sage: search_doc(’eigenvalue ’)

...

The HTML documentation for Sage is far from complete; there is lots of code in the
Sage library that isn’t documented at all in the HTML documentation of Sage, for what-
ever reason. You can easily search through all of this code by typing search_src(...)
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on either the command line or in the notebook.

sage: search_src(’eigenvalue ’)

...

On the command line you’ll get a list of each line in each file that contains the given
search term. In the notebook, you will get a list of all files in the Sage library that
contain the search term, along with links to the files. The same caveats regarding
clicking on the links applies as with search_doc (see above). When you click on a
file, it will look funny for a moment (a bug, in my opinion), then suddenly refresh and
display as a very nicely formated and syntax highlighted page. You should then search
this page for your term, in order to see it in context. At the top of the page there is also
a link called “browse directory”, which lets you browse to any file in the Sage library
and similarly view it.

To search the definitions of function, use search_def. This works just like search_src
but restricts the search to the definition lines of functions.

sage: search_def(’other_graph ’)

...

4.2 Question and Answer Sites

The Sage project hosts their own question and answer site devoted to Sage at http:

//ask.sagemath.org. You can instantly sign in using OpenID and ask a question, or
answer one. Specific answerable questions are best. You can also easily search all the
questions, and see if anybody has asked a similar question before (and what the answers
were). The answers are ranked based on user voting, and the questions are sorted by
tags. People are motivated to give good answers, since they get “karma points” for
posting useful answers.

One of the first big question/answer sites is http://stackoverflow.com/, which
has a huge number of questions and answers about all things related to coding. One of
the top most popular tags is “python”, with over 50000 question. There are also a few
dozen questions taged “sage” (some about the Sage math software, and some about the
unrelated Sage accounting software). If you run into Python programming questions,
this can be an excellent site on which to search for answers or ask questions.

4.3 Documentation for components of Sage

There are many components of Sage that offer vast amounts of functionality, and have
excellent documentation, but you’ll find almost nothing about them in any of the stan-
dard Sage documentation. For example, for numerical computing numpy, scipy, and
cvxopt are all included in Sage, and often many, many capabilities that are well docu-
mented in their respected documentation. Thus it is quite useful to know that you can
do the following:

sage: import scipy.special

sage: scipy.special.<call some function >

74

http://ask.sagemath.org
http://ask.sagemath.org
http://stackoverflow.com/


There is a list of all packages included in every recent copy of Sage at http://

sagemath.org/packages/standard/.
Usually the best way to find the documentation for one of these optional components

of Sage is to use Google. Search for the component by name and possibly throw in a
word like “math” or if it the component is a Python library the word “python”. For
example, there is a component of Sage called mpmath, and you can find its website by
doing a google search for... mpmath. Once there, it is easy to find the documentation,
and you should quickly be able to start using mpmath’s functionality from within Sage.

If you have your own Sage install, you can also install nearly any Python library you
want into it. However, this is not an easy option if you’re using a public Sage notebook
server that somebody else administers.

4.4 Live Chat

There is a live IRC chatroom where you can ask for help anytime, and maybe get
some feedback. All you have to do is point your webbrowser to http://sagemath.org/

help-irc.html, fill in the form, and you’re chatting. Type /who to see a list of people
logged into the forum.
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Chapter 5

Sage Development

5.1 Overview of Sage Development

Motivating Problem: Suppose you want to modify or improve Sage in some way, and
want your changes to be included in a future release of Sage. How do you do this?

5.1.1 What is a Sage Release?

New versions of Sage are released about once every month or two, so it is possible for
your contribution to get into Sage and start being used by people relatively quickly. A
new release of Sage consists of both an updated version of the code in the Sage library,
and updated versions of some of the roughly 90 third-party packages that Sage includes.
Before each release, this code (over 6 million lines) is all built from source on dozens of
hardware/OS combinations, and hundreds of thousands of tests are run to increase the
chances Sage will actually work correctly when you use it.

The way in which Sage is distributed—as both a core library and its dependencies—
is somewhat unusual in the world of open source software, though it is similar to how
other mathematical software of comparable size and scope to Sage is released (Magma,
Mathematica, Matlab, Maple, Enthought’s Python Distribution, etc.) Mathematical
software is highly interrelated and extremely sensitive to even the slightest changes
anywhere in the system, and because Sage has such a large test suite, we actually notice
these issues. It is a constant and difficult battle just to keep the components of Sage
working together as new and hopefully improved releases of each component appear.

Each new Sage release has an associated changelog, which lists all of the changes that
were made to Sage in that release, along with everybody who contributed to the release.
You can find a list of these at http://sagemath.org/mirror/src/changelogs/

The changelog for Sage-4.6.2 looks like this:

Sage 4.6.2 was released on 28 February 2011. It is available at

http :// www.sagemath.org/download.html

* About Sage (http ://www.sagemath.org)

...

The following 100 people contributed to this release. Of those , 25

made their first contribution to Sage:

* Alain Filbois [first contribution]

* Alain Giorgetti [first contribution]
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* Alexandre Blondin M a s s

* Alexey U. Gudchenko [first contribution]

* Alex Ghitza

* Aly Deines

...

* William Stein

* Wolfgang Steiner [first contribution]

* Yann Laigle -Chapuy

* Yann Ponty [first contribution]

* Release manager: Jeroen Demeyer.

* Doctesting coverage:

* Overall weighted coverage score: 84.8% (84.4% for 4.6.1)

* Total number of functions: 27200 (26816 for 4.6.1)

* We closed 221 tickets in this release. For details , see

http :// sage.math.washington.edu/home/release/sage -4.6.2/ tickets.html

Closed tickets:

#116: notebook doctest -- should be able to doctest a worksheet ,

so we can distribute worksheets with SAGE [Reviewed by

Willem Jan Palenstijn]

#5389: Creating a updated GAP workspace with -tp is racy

[Reviewed by Willem Jan Palenstijn]

#8216: Make David Perkinson ’s sandpile 2.2 module an experimental

(at least) package [Reviewed by David Kirkby]

#9641: Race condition with sage -tp [Reviewed by Willem Jan

Palenstijn]

#9809: Graph.num_edges () gives wrong answer [Reviewed by Minh

Van Nguyen]

...

#10816: Volker Braun: Subscheme creation does not work from the

notebook [Reviewed by Jeroen Demeyer]

#10842: Jeroen Demeyer: Increase timeouts in sage/tests/cmdline.py

[Reviewed by Volker Braun]

Notice that 100 (!) different people contributed improvements and bug fixes to Sage-
4.6.2, which was a release that took just over a month to appear. Of these, 25 were
first-time contributors.

There were 221 “trac tickets” closed in this release. Each ticket description is listed
after a number. Visit http://sage.math.washington.edu/home/release/sage-4.

6.2/tickets.html for an easy-to-navigate list of these tickets, which links to http:

//trac.sagemath.org, or search for #number in the search box in the upper right.
For example, consider ticket #10336. This ticket is an “enhancement”, not a bug

fix, that includes a code submission by novoselt, a.k.a. Andrew Novoseltsov, who is
a Russian graduate student studying algebraic geometry in Canada (who used to be
a Univ. of Washington graduate student). When you view the ticket you’ll see how
long ago the patch was posted, that little improvements were made, and that vbraun,
a.k.a. Volker Braun (a Physicist in Ireland) gives the work a positive review. Moreover,
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two months after the first code was submitted, it was merged into sage-4.6.2.alpha2 by
jdemeyer, who is a Belgium number theorist.

Notice that before a final Sage release is made there are a sequence of alpha releases,
e.g., sage-4.6.1.alpha1, sage-4.6.1.alpha2, and also release candidates. It is important
to emphasize that these are all completely public releases, which anybody can try out,
and the source code for all of them, including in progress releases, is available at http:
//sage.math.washington.edu/home/release/. There are other open source projects,
even components of Sage1), that keep their alpha releases secret or semisecret; we believe
this is a counterproductive approach to the creation of open source software, and that
it is best to keep every step of the development process open.

5.1.2 Hurdles

There are several hurdles to getting your code into Sage:

• You have to use the command line. It is currently simply not possible to use only
the notebook for Sage development... yet!

• You have to know basic UNIX commands: ls, cp, cd, mv, etc.

• You have to have some understanding of the Sage Python library and our coding
conventions and requirements.

• You have to submit patches to the trac webpage, which requires using the Mercurial
distributed revision control system. Thus you must become familiar with the basic
use of a distributed revision control system. This is good for you anyways.

• All patches go through a peer review process, just like a formally published paper.
Somebody has to referee your work, signing off on it publicly, before your work can
go into Sage. Beyond testing whether the code works and is stylish, this process
also includes asking whether it makes sense to include your code in Sage at all;
we usually do not want third-rate code.

Fortunately, the process is well documented (see http://sagemath.org/doc/developer/),
there are thousands of examples of tickets along with the complete review process at
http://trac.sagemath.org, and there are numerous Sage Days workshops that help
people get up to speed. Around five hundred people have successfully got code into
Sage, and you can too if you are serious.

5.1.3 Walkthrough

We will do a careful slow step-by-step live demo that illustrates some of Sage develop-
ment.

my_laptop ssh math480@sage.math.washington.edu

math480@sage :~$ cd scratch

math480@sage :~/ scratch$ ls

sage -4.6.2 - sage.math.washington.edu -x86_64 -Linux.tar.gz

math480@sage :~/ scratch$ mkdir wstein

math480@sage :~/ scratch$ cd wstein/

math480@sage :~/ scratch/wstein$ ls

1For example, GAP http://www.gap-system.org/.
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math480@sage :~/ scratch/wstein$ tar xf ../sage -4.6.2 - sage.math.washington.edu -x86_64 -Linux.tar.gz

[[Wait about 1 minute .]]

math480@sage :~/ scratch/wstein$ mv sage -4.6.2 - sage.math.washington.edu -x86_64 -Linux sage

math480@sage :~/ scratch/wstein$ cd sage/

math480@sage :~/ scratch/wstein/sage$ ls

COPYING.txt devel ipython Makefile sage spkg

data examples local README.txt sage -README -osx.txt VERSION.txt

math480@sage :~/ scratch/wstein/sage$ here # sets up path

math480@sage :~/ scratch/wstein/sage$ sage

----------------------------------------------------------------------

| Sage Version 4.6.2 , Release Date: 2011 -02 -25

|

| Type notebook () for the GUI , and license () for information.

|

----------------------------------------------------------------------

The Sage install tree may have moved

...

Done resetting paths

sage: 2 + 3

5

Now make some change (using vim, emacs, pico, etc.), do ”sage -br” to make change
take effect. Then make a patch and export it.

5.2 How to modify the Sage library and create a
patch

1. Use an ssh client to connect to math480@sage.math.washington.edu. I told you
the password during class. On Windows, putty is a good client. On OS X or Linux,
just open a terminal and type: ssh math480@sage.math.washington.edu

2. The minimum commands you’ll need to know to use the command prompt for
this assignment are. So look these over:

• pwd = print working directory = ”where am I”?

• ls = list files in working directory

• cd .. = move up one directory

• cd directory_name = move into directory_name

• tar xf /home/math480/scratch/sage-4.8-sage.math.washington.edu-x86_64-Linux.tar.gz

= extract your own copy of Sage into the current directory

• mv dir1 dir2 = rename dir1 to dir2 (or file1 to file2)

• mkdir directory_name = make a directory

• pico filename = edit the given file

• hg commit = commit your changes to your local repository

• hg export tip > my.patch = export your changes to the file my.patch

• hg rollback = use this only if you want to undo the commit.

• /home/math480/scratch/your_name/sage/sage -br = build and run mod-
ified sage
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• You can browse your files at
http://sage.math.washington.edu/home/math480/scratch/

Now we’ll proceed step-by-step to use the above commands to make your patch.

3. Make your own directory:

cd scratch

mkdir your_name

cd your_name

4. Extract sage into your directory:

tar xf /home/math480/scratch/sage -4.8- sage.math.washington.edu -x86_64 -Linux.tar.gz

This will extract over 50,000 files and takes between 1 minute and 15 minutes –
be patient.

5. Rename your sage install:

mv sage -4.8- sage.math.washington.edu -x86_64 -Linux sage

6. Find some file(s) to edit:

cd sage/devel/sage/sage/

ls

cd some_subdirectory

pico some_file

7. Test out your changes:

/home/math480/scratch/your_name/sage/sage -br

The first time you do this it will take about a minute. Afterwards it should only
take a second or two.

8. Commit your changes (enter a 1-line description into the editor that pops up):

hg commit

9. Oops, change your mind?!

hg rollback

Now make more changes and go to step 7. Make sure to do hg commit before
going to step 10.

10. Export your changes

hg export tip > my.patch
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11. Find the file my.patch by browsing to
http://sage.math.washington.edu/home/math480/scratch/

12. Download my.patch and attach it to your email to me.
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Chapter 6

How Sage Uses Other Math
Software Systems

<p>The goal of this lecture is to give you a deeper understanding of some of the fundamental and unique architectural issues involved in Sage.</p>

<p>I built Sage partly from other complete mathematical software systems because I wanted to finish Sage (for my use!) in at most 5 years.&nbsp;</p>

<h3 style="text-align: center;">"Building the car instead of reinventing the wheel."</h3>

<p>Some of the major components included in Sage are:</p>

<ul>

<li>PARI/GP - number theory</li>

<li>GAP - group theory</li>

<li>Singular - commutative algebra</li>

<li>Maxima - symbolic calculus</li>

<li>R - statistics</li>

</ul>

<p>Each of the above is a full standalone project with its own custom programming language, history, culture, etc. &nbsp;And each has unique, powerful, debugged code that I don’t want to have to rewrite from scratch, since it would take too long, and writing code from scratch is incredibly difficult and frustrating.&nbsp;</p>

<p>I also wanted to make it easy to call the following systems from Sage for the purposes of benchmarking, porting, migration of users and code, optional functionality, etc.:</p>

<ul>

<li>Magma</li>

<li>Maple</li>

<li>Mathematica</li>

<li>Mupad</li>

<li>Matlab</li>

<li>Axiom, Octave, REDUCE, Macaulay2, Scilab, Kash, Lisp</li>

</ul>

<p>&nbsp;</p>

<p><strong>The Big Problem:</strong> How can we make use of the above systems from Python?</p>

<p>This question is difficult partly because there are so many answers, each with pros and cons, and I had to choose (then be criticized for my choices).</p>

<p>&nbsp;</p>

<p>&nbsp;</p>

sage: number_of_partitions(10)

42

sage: list(Partitions(10))

[[10], [9, 1], [8, 2], [8, 1, 1], [7, 3], [7, 2, 1], [7, 1, 1, 1], [6, 4], [6, 3, 1], [6, 2, 2], [6, 2, 1, 1], [6, 1, 1, 1, 1], [5, 5], [5, 4, 1], [5, 3, 2], [5, 3, 1, 1], [5, 2, 2, 1], [5, 2, 1, 1, 1], [5, 1, 1, 1, 1, 1], [4, 4, 2], [4, 4, 1, 1], [4, 3, 3], [4, 3, 2, 1], [4, 3, 1, 1, 1], [4, 2, 2, 2], [4, 2, 2, 1, 1], [4, 2, 1, 1, 1, 1], [4, 1, 1, 1, 1, 1, 1], [3, 3, 3, 1], [3, 3, 2, 2], [3, 3, 2, 1, 1], [3, 3, 1, 1, 1, 1], [3, 2, 2, 2, 1], [3, 2, 2, 1, 1, 1], [3, 2, 1, 1, 1, 1, 1], [3, 1, 1, 1, 1, 1, 1, 1], [2, 2, 2, 2, 2], [2, 2, 2, 2, 1, 1], [2, 2, 2, 1, 1, 1, 1], [2, 2, 1, 1, 1, 1, 1, 1], [2, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]

sage: time number_of_partitions(10^7)



Time: CPU 0.32 s, Wall: 0.32 s

82



<p><strong>Problem 1:</strong> Availability of a specific known version of a third party software package.</p>

<p>Even if we solve the big problem above, a "vendor" will often just release a new version of their software with numerous changes that break our solution. &nbsp;This happens <em>constantly</em>. &nbsp;And the actual versions of software that people have installed (under OS X, various Linuxes, Solaris, etc.) will be widely distributed over versions of software from the last decade. &nbsp; &nbsp;</p>

<p><strong>Solution: </strong>For the free open systems that (1) we really need, and (2) we can build from source easily enough, we ship and build a very specific version as part of Sage. &nbsp; This completely solves problem 1, at the expense of a lot of (misplaced) criticism from people who don’t understand the problem; at the same time, this accidentally creates a solution to a different problem (easy-to-install distribution of a bunch of useful math software), which many people greatly appreciate.&nbsp;</p>

<p>For the non-free systems or the free systems that are hard to build, the problem just doesn’t get solved. &nbsp;And indeed our interfaces and code that relies on those systems is sadly fairly brittle; often a new version of Magma just breaks with Sage. &nbsp; Fortunately, of course very little functionality in Sage depends on such systems.&nbsp;</p>

<p>&nbsp;</p>

<p>&nbsp;</p>

<p><strong>Problem 2</strong>: Make a specific version of some mathematics software (call it M) usable from Python.</p>

<p>Here are some of the many potential approaches to this problem:</p>

<ol>

<li><strong>Naive Subprocess. </strong>Start up M, tell it to read in a file, and save the results in a file, and terminate. &nbsp;<em>This doesn’t preserve state between calls, and startup time can easily be seconds, so this is not viable.</em></li>

<li><strong>Create network protocols.</strong> &nbsp;Define an openmath/XML based protocol for well-defined communication of "arbitrary mathematics" (whatever that is) between software, e.g., between M and Python. &nbsp;Design and implement client and server protocols. &nbsp;<a href="http://www.symbolic-computation.org/The_SCIEnce_Project" target="_blank">The SCIEnce project</a>, started in 2006, and costing many millions of dollars, is an example. &nbsp; <em>This seems like the right approach, but it it is slow in certain relevant benchmarks and too challenging (for me) to develop. &nbsp;It’s probably very useful for something (e.g., writing research papers), but is massively too complicated for what we need for Sage, which is focused on what is practical now.</em></li>

<li><strong>Pseudo-tty’s (ptty) = pexpect. </strong>&nbsp; Create a simulated command line prompt that is controled by Python. &nbsp;Absolutely anything that one can do at the command line with M immediately becomes usable from a Python program. &nbsp; &nbsp;This is relatively easy to implement and extremely flexible -- one can create a useful interface to any math software system out there in a day. &nbsp;It is slow in some sense, but still much better than (1) and (2). &nbsp; <em>This approach has been used in Sage for a long time.</em></li>

<li><strong>C/C++ library interfaces.</strong> &nbsp;Create a C/C++ library interface and link the other program into Python itself, using Cython. &nbsp; This is extremely difficult, because none of the M’s (except PARI) are designed to be used this way. &nbsp;However, it is extremely fast. &nbsp;For basic arithmetic, it can be several hundred times faster than (3) above. &nbsp;</li>

</ol>

<p>As of now, people have written fairly polished versions of both (3) and (4) for all of: PARI, GAP, Singular, Maxima, and R. &nbsp; &nbsp;In case of (4), these are all hard work, and aren’t necessarily used much in Sage yet, or even included in Sage, but they exist, and are on the way in.&nbsp;</p>

<p>The rest of this worksheet is about how to use (3) above: the pexpect based interfaces. &nbsp; This is <em>well worth learning</em>, because these interface all work in almost exactly the same way, and there are interfaces to pretty much every math software system out there. &nbsp; Sage is the only software in existence that can talk to so many other math software systems. &nbsp;</p>

<p>Here are the basic points, which we’ll follow with several examples illustrating them. &nbsp;Suppose m is one of math software systems, e.g., r or singular or maxima:</p>

<ul>

<li><strong>x = m.eval(s): </strong>sets x equal to the string obtained by typing the string s into M. &nbsp; The string s can be several lines long. &nbsp;(This is how many % modes in the noteboook are implemented.)</li>

<li><strong>x = m(s): </strong>creates a new Python object that "wraps" the result of evaluating s in M. &nbsp;It’s like typing "x.name() = s" into M. &nbsp;You can then do arithmetic with x, and call functions on it, e.g., <strong>x.function(...)</strong> or <strong>m.function(..., x, ...)</strong>.&nbsp;</li>

</ul>

<p>And that is pretty much it. &nbsp;</p>

<p><strong>WARNING:</strong> There is latency. &nbsp;<strong>Any</strong> time you call any function involving a pexpect interface, expect it to take on the order of at least <strong>1ms (=one millisecond), </strong>even if the actual operation in the system M takes almost no time. &nbsp; &nbsp;For comparison, adding or multiplying most simple objects in Python/Sage takes about 1 microsecond (i.e., 1/1000 the time of a call involving pexpect), and adding/multiping objects in Cython can take only a few nanoseconds (1/1000000 the time of a pexpect call). &nbsp;</p>

sage: %lisp

sage: (* 5 7)

35

sage: lisp.eval(’(* 5 7)’)

’35’

sage: %maxima

sage: a:5

sage: b:7

sage: a*b

5

7

35

<h2>Examples</h2>

<p>Another note: the very first time you do m.eval(...) it may take surprisingly long, since another program is starting up.</p>

<p>We use Maxima to illustrate evaluation of a simple string:</p>

sage: s = maxima.eval("2 + 3")

sage: type(s)

<type ’str’>

sage: s

’5’

sage: maxima.eval("""

... a : 2;

... b : 3;

... c : a +b;

...

sage: """)

83



sage: maxima.eval(’c’)

’5’

sage: timeit(’maxima.eval("2+2")’)

625 loops, best of 3: 1.2 ms per loop

sage: a = maxima(’2’)

sage: timeit(’a + a’)

625 loops, best of 3: 1.37 ms per loop

sage: timeit(’2+2’)

625 loops, best of 3: 331 ns per loop

<p>There is now a separate Maxima subprocess running. &nbsp;Each process has an id number associated to it:</p>

sage: maxima.pid() # the "pin id" of the subprocess

9259

<p>Next will illustrate creating a Python object that wraps an expression in Maxima.</p>

sage: s = maxima(’sin(x^3) * tan(y)’)

sage: type(s)

<class ’sage.interfaces.maxima.MaximaElement’>

sage: float(1.31*10^(-3) / (330*10^(-9)))

3969.69696969697

<p>The name of the object in the corresponding Maxima session:</p>

sage: s.name()

’sage2656’

<p>The object prints nicely:</p>

sage: s

sin(x^3)*tan(y)

<p>Latex output happens to be supported:</p>

sage: show(s)

<html><div class="math">\newcommand{\Bold}[1]{\mathbf{#1}}\sin x^3\,\tan y</div></html>

sage: maxima.eval(’sage2656 + 1’)

’sin(x^3)*tan(y)+1’

<p>You can call functions on objects in a Pythonic way.</p>

sage: s.integrate(’y’)

sin(x^3)*log(sec(y))

<p>Or use maxima.function(...)</p>

sage: maxima.integrate(s, ’y’)

sin(x^3)*log(sec(y))

<p>The result is another Python object (which wraps another object defined in Maxima). &nbsp;We can call functions on that object as well.</p>

sage: z = s.integrate(’y’)

sage: type(z)

<class ’sage.interfaces.maxima.MaximaElement’>

sage: z

sin(x^3)*log(sec(y))

sage: z.name()

’sage2662’

sage: z.diff(’y’)

sin(x^3)*tan(y)

sage: z + z

2*sin(x^3)*log(sec(y))

<p><strong>Conclusion:</strong> If you understand the above, you are in extremely good shape. &nbsp;All the other interfaces work the same way. &nbsp; The examples below are just to illustrate some subtle points and show how interfaces are useful. &nbsp;</p>

sage: z.jksadhflksd()

jksadhflksd(sin(x^3)*log(sec(y)))
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sage: z_sage = z.sage(); z_sage

log(sec(y))*sin(x^3)

sage: type(z_sage)

<type ’sage.symbolic.expression.Expression’>

sage: maxima(z_sage)

sin(x^3)*log(sec(y))

<p>It is possible in some systems to seriously mess things up and get things "out of sync". &nbsp;This is nearly impossible with Maxima, since we use it so heavily and have debugged the heck out of it. &nbsp;However, with other systems (like Magma) this can happen. &nbsp;If it does, do, e.g., <strong>maxima.quit()</strong>. &nbsp;This completely kills the subprocess, invalides any Python objects that wrap variables in that session, and starts a brand new fresh session. &nbsp;</p>

<p>Here is an example with each of the five big systems included in Sage:</p>

sage: maxima(’2+3’) # maxima

5

sage: gp(’2+3’) # pari/gp

5

sage: singular(’2+3’)

5

sage: gap(’2+3’)

5

sage: r(’2 + 3’)

[1] 5

sage: z_sage._maxima_init_()

’(log(sec(y)))*(sin((x)^(3)))’

<p>You can follow standard R tutorials and have the computations (except graphics at present) to all definitely "just work". &nbsp;(Unlike the potentially confusing rpy2.)&nbsp;</p>

sage: x = r(’c(1,3,2,10,5)’); y = r(’1:5’)

sage: print x

sage: print y

[1] 1 3 2 10 5

[1] 1 2 3 4 5

sage: x + y

[1] 2 5 5 14 10

sage: x/y

[1] 1.0000000 1.5000000 0.6666667 2.5000000 1.0000000

sage: x.length()

[1] 5

sage: x > 3

[1] FALSE FALSE FALSE TRUE TRUE

sage: x[x > 3]

[1] 10 5

<p>There is also an interface to Octave, which is very similar to Matlab (but free).</p>

sage: A = octave(’rand(3)’); A

0.401446 0.286955 0.396858

0.606625 0.371021 0.515619

0.96863 0.683554 0.837288

sage: A*A

0.719642 0.492938 0.639562

0.968042 0.664185 0.863772

1.61454 1.1039 1.43791

sage: A.rref()

1 0 0

0 1 0

0 0 1

<p><strong>Bonus:</strong> There is even a pexpect interface to Sage itself. &nbsp; (Trivia: this is used in the implementation of the Sage notebook.)</p>
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sage: sage0(’2 + 3’)

5

sage: A = sage0(’matrix(QQ, 3, [1..9])’); A

[1 2 3]

[4 5 6]

[7 8 9]

sage: type(A)

<class ’sage.interfaces.sage0.SageElement’>

sage: A.echelon_form()

[ 1 0 -1]

[ 0 1 2]

[ 0 0 0]

<p>Let’s get crazy: a pexpect interface inside a pexpect interface. &nbsp;And of course, this code is going from the notebook to Sage via yet another interface.</p>

sage: sage0.eval(’sage0 = Sage()’)

sage: z = sage0(’sage0("3+5")’)

sage: type(z)

<class ’sage.interfaces.sage0.SageElement’>

sage: z

8

sage: sage0.type(z)

<class ’sage.interfaces.sage0.SageElement’>
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Part II

Using Sage
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Chapter 7

Graphics

7.1 2d Plots

<p>Sage has plotting support that covers:</p>

<ul>

<li>most 2d plotting that Mathematica has (with a similar interface)</li>

<li>3d plotting, somewhat like Mathematica</li>

<li>most 2d plotting that Matlab has (with a similar interface)</li>

</ul>

<p>Sage uses the Python library Matplotlib (<a href="http://matplotlib.sourceforge.net/" target="_blank">http://matplotlib.sourceforge.net/</a>) is used under the hood to render 2d graphics; for 3d graphics, Sage can use a Java applet (jmol), an HTML5 canvas renderer, or a raytracer. &nbsp;</p>

<p>In this worksheet, we’ll explain how to use the "mathematica-style" 2d plotting capabilities of Sage.</p>

<h1>Drawing Lines</h1>

<p>First, we’ll discuss a simple but very powerful plotting command in Sage called "line". &nbsp;It takes as input a list of points, and draws a sequence of line segments connecting them. &nbsp; &nbsp;The points are given as 2-tuples (x,y), which are the x and y coordinates of a point in the plane. &nbsp; The output of calling the line command is a line object. &nbsp;</p>

sage: L = line([(-2,-2), (3,8), (5, 5)])

sage: print L

Graphics object consisting of 1 graphics primitive

<p>To <em><strong>see</strong></em> the actual plot of L, just put L by itself on a line or type show(L) or L.show():</p>

sage: L

<html><font color=’black’><img src=’cell://sage0.png’></font></html>

sage: show(L)

<html><font color=’black’><img src=’cell://sage0.png’></font></html>

sage: L.show()

<html><font color=’black’><img src=’cell://sage0.png’></font></html>

<p>Incidentally, there are many, many options that you can pass to the show command. &nbsp; The three most useful are:</p>

<ul>

<li>frame=True: &nbsp; Make it so the x-y axis are replaced by a frame, which is much better when looking at certain types of plots</li>

<li>gridlines=True: Adds a background grid, which makes it easier to understand the plot in some cases.</li>

<li>figsize=[w,h]: &nbsp;Allows you to adjust the size of the output. &nbsp;Think of w and h as the width and height in "inches".&nbsp;</li>

</ul>

<p>You can combine these options. &nbsp;For example:</p>

sage: L.show(frame=True, gridlines=True, figsize=[8,2])

<html><font color=’black’><img src=’cell://sage0.png’></font></html>

<p>&nbsp;In the notebook you can just click and download the default plots displayed above, since they are png images. &nbsp; However, if you want to include images in a paper you’re writing, or use an image in an editor such as Inkscape, it’s much better to save the images in other formats. &nbsp; Thus a&nbsp;critically useful command is L.save(’filename.ext’), which enables you to save a graphics object to a file. &nbsp;The extension of the filename determines the type of the file. &nbsp;For example, below we save L to pdf, eps, and svg formats. &nbsp;Note that the svg image just appears embedded in your web browser, and you can pan around. &nbsp;In any case, you can always (right or control) click on the link or image to save it as a file on your computer. &nbsp; &nbsp;&nbsp;</p>

sage: L.save(’image.pdf’)

sage: L.save(’image.eps’)

sage: L.save(’image.svg’)
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<p>Lines (and all other graphics objects) have numerous properties that you can adjust, which you find in the documentation. &nbsp;The most important properties of lines are:</p>

<ul>

<li>color=...: where for the color you can give a string, e.g., ’red’; or an html color, e.g., ’#042a99’, or an rgb triple.</li>

<li>thickness=4: &nbsp;the thickness of the line</li>

<li>linestyle=’--’: &nbsp; the style of the line: ’--’, ’-.’, ’-’, ’:’</li>

</ul>

sage: line([(-2,-2), (3,8), (5, 5)], color=’purple’, thickness=3, linestyle=’--’)

<html><font color=’black’><img src=’cell://sage0.png’></font></html>

sage: line([(-2,-2), (3,8), (5, 5)], color=’#042a99’, thickness=1.5, linestyle=’:’)

<html><font color=’black’><img src=’cell://sage0.png’></font></html>

<p>Let’s have some fun:</p>

sage: line([(random(), random()) for _ in range(100)], color=’purple’)

<html><font color=’black’><img src=’cell://sage0.png’></font></html>

<p>Arithmetic: a key unusual idea in Sage graphics is that you combine together different graphics using +, as illustrated below:</p>

sage: L1 = line([(0,0), (1,1), (2,0)], color=’green’, thickness=7)

sage: L2 = line([(1,0), (2,5), (3,0)], color=’purple’, thickness=10, alpha=.7) # alpha = transparency

sage: L1 + L2

<html><font color=’black’><img src=’cell://sage0.png’></font></html>

<p>There are numerous other important plotting commands in Sage, including point, circle, polygon, arrow, and text, as illustrated below:</p>

sage: G = point((1,1), pointsize=200) + circle((1,1), .5)

sage: # zorder makes sure that triangle is on top

sage: G += polygon([(0,0), (1,.6), (2,0)], color=’purple’, zorder=5)

sage: G += arrow((1,1), (2,1.2), color=’green’)

sage: # You can use TeX formulas:

sage: G += text(r"$\sqrt{\sin(\pi x^2)}$",(1.8,1.35),color=’black’,fontsize=20)

sage: G.show(aspect_ratio = 1)

<html><font color=’black’><img src=’cell://sage0.png’></font></html>

<p>There are also a function just called "plot" that makes a plot of a wide range of Sage objects. &nbsp;It is very useful especially for plotting functions of one variable. &nbsp;It is probably the most used Sage plotting function. &nbsp;The result is a graphics object, which you can use just like any graphics object discussed above.</p>

sage: plot(x*sin(1/x), (x, -1, 5), color=’green’, thickness=2)

<html><font color=’black’><img src=’cell://sage0.png’></font></html>

<p>matrix_plot is another similar plotting function, which allows you to visualize a matrix.</p>

sage: A = random_matrix(RDF,100);

sage: matrix_plot(A)

<html><font color=’black’><img src=’cell://sage0.png’></font></html>

sage: matrix_plot(A^2)

<html><font color=’black’><img src=’cell://sage0.png’></font></html>

<p>Finally, there is a graphics_array function that lets you assemble several independent plots into a single big plot.</p>

sage: graphics_array([[matrix_plot(A), matrix_plot(A^2)], [plot(sin), plot(cos,color=’red’)]])

<p>Bonus -- you can animate graphics. &nbsp;Given any list of graphics objects, the animate command will make a single animated GIF file out of them. &nbsp;For example:</p>

sage: v = [plot(sin(a*x), (x,0,10)) for a in [0,0.2,..,pi]]

sage: z = animate(v, xmin=0,xmax=10,ymin=-1,ymax=1)

sage: z.show(delay=10)

7.2 3d Plots

<h1>Sage 3d Graphics</h1>

<p>In Sage, just as with 2d graphics, you make 3d graphics by creating various primitives and combining them together using addition to create a 3d scene.&nbsp;</p>

<p>There are many 3d graphics primitives in Sage. &nbsp; For example, you can draw platonic solids using <strong>tetrahedron, cube, octahedron, dodecahedron, icosahedron</strong>.&nbsp; You can plot round objects using <strong>sphere</strong> and <strong>point3d</strong>.&nbsp;&nbsp; You can plot 1d arrows, lines, and curves in space using <strong>arrow3d, bezier3d, line3d</strong>.&nbsp;&nbsp; There are also numerous powerful tools for plotting data, functions, and surfaces in 3d, including<strong> cylindrical_plot3d, implicit_plot3d, list_plot3d, parametric_plot3d, plot3d, plot_vector_field3d, polygon3d, revolution_plot3d, spherical_plot3d</strong>, and <strong>implicit_plot3d</strong>.&nbsp; Finally, you can place text in 3d using the <strong>text3d</strong> function.</p>

<p>All 3d graphics objects have <strong>translate</strong> and <strong>rotate</strong> (and <strong>rotateX, rotateY, rotateZ</strong>) methods, which allow you to position the object or collection of objects anywhere you want.</p>

<p>Also, you can set the color and opacity of any 3d object when you create it, as an optional parameter.</p>
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<p>Finally, you can display a 3d scene G using either&nbsp; jmol (java) via <strong>G.show()</strong>, the Tachyon raytracer via <strong>G.show(viewer=’tachyon’)</strong>, or HTML5 canvas via <strong>G.show(viewer=’canvas3d’)</strong>.&nbsp; The show command also takes an aspect_ratio option; e.g., sometimes <strong>aspect_ratio=1</strong> is useful, in order to make sphere round, etc.</p>

<p>There are also some rudimentary 3d plotting capabilities in matplotlib.&nbsp; I had once announced an intention to improve those for Sage, but upon closer inspection one finds that matplotlib is very 2d oriented and the 3d stuff just doesn’t feel right at all.</p>

<p><strong>History:</strong> William Stein included Tachyon in Sage, then Tom Boothby, Josh Kantor and William Stein wrote some very preliminary 3d plotting functionality that relied entirely on tachyon, and could plot functions $z=f(x,y)$.&nbsp; A year later, during Christmas break, William stumbled on the jmol Java viewer (that only uses Java’s 2d render!) for molecules and he and Robert Bradshaw snuck off and figured out how to make jmol show more general mathematical graphics, and also wrote most of the 3d plotting library on top of this, motivated by the upcoming joint math meetings in San Diego (Jan 2008).&nbsp;&nbsp; David Joyner then submitted many examples to the documentation.&nbsp; Next, William Cauchois (as a UW freshman project) and Carl Witty added an implicit_plot3d function, and Cauchois also added HTML5 canvas rendering.&nbsp; Other people added plotting of vector fields, cylindrical plotting, etc., driven by Calculus teaching needs.&nbsp;&nbsp;&nbsp;</p>

<p><strong>Note: </strong>The 3d plotting in Sage is mainly oriented toward mathematical visualization, rather than visualizing large 3d datasets that come up in Scientific computing.&nbsp;&nbsp; Scientsts are rumored to make great use of other Python-friendly options, none of which are included with Sage or are easy to install in Sage at present, though all are free, open source, and can be installed if one is <em>"sufficiently motivated"</em>:&nbsp;&nbsp; MyaVI (which uses the VTK C++ library),&nbsp;&nbsp; ScientificPython,&nbsp;&nbsp; ...?&nbsp;</p>

<p><strong>Shortcoming:</strong> The biggest shortcomings are that (1) realtime interaction with 3d graphics is not supported in any way, (2) there is no easy way to make high quality movie animations of 3d scenes (it is possible, but requires optional tools), and (3) your browser can run out of Java memory if you display too many jmol java-based 3d plots at once, and refuse to display anymore -- this has been fixed in a patch that has gone into Sage yet.</p>

<p>The rest of this worksheet illustrates with examples how to create 3d images using Sage.</p>

<h2>Platonic Solids</h2>

<p><strong>Problem</strong>: Draw all of the platonic solids next to each other in different colors in a single plot.</p>

sage: G = tetrahedron(color=’red’)

sage: G += cube((2,0,0), color=’green’)

sage: G += octahedron((4,0,0), color=’purple’)

sage: G += dodecahedron((6,0,0), color=’orange’)

sage: G += icosahedron((8,0,0), color=’brown’)

sage: G.show(frame=False, aspect_ratio=1, zoom=1.3)

sage: G.show(viewer=’tachyon’, frame=False, aspect_ratio=1, zoom=1.5)

sage: G.show(viewer=’canvas3d’, frame=False, aspect_ratio=1, zoom=1.5)

<h2>Points and Spheres</h2>

<p><strong>Problem: </strong>Plot 40 semi-transparent random spheres.&nbsp;&nbsp; Similarly, plot a few hundred random points.</p>

sage: G = sum( sphere((random(), random(), random()), color=hue(random()),

... size=.1*random(), opacity=.5) for _ in range(40))

...

sage: G.show(spin=True, frame=False)

sage: G = sum( point3d((random(), random(), random()), color=hue(random())) for _ in range(1000) )

sage: G.show(spin=True, frame=False)

<h2>1d Curves Through Space</h2>

<p>Draw a 3d random walk.</p>

sage: v = [(0,0,0)]

sage: for i in range(300):

... v.append([a+random()-.5 for a in v[-1]])

...

sage: line3d(v, color=’black’)

sage: line3d(v, color=’red’, thickness=3)

<h2>3D Text</h2>

<p><strong>Problem:</strong> Draw some text in 3d.</p>

sage: G = sum([text3d(’%.1f’%n, (cos(n),sin(n),n), color=hue(n/8)) for n in [0,0.3,..,12]])

sage: G.show(spin=True)

<h2>Plotting Functions</h2>

<p><strong>Problem</strong>: Plot a function $z=f(x,y)$.</p>

sage: var(’x,y’)

sage: B=1.5

sage: plot3d( sin(pi*(x^2+y^2))/2,(x,-B,B),(y,-B,B), plot_points=100, color=’gree’ )

<p><strong>Problem: </strong>Plot an implicit 3d surface defined by an equation $f(x,y,z)=0$.</p>

sage: T = RDF(golden_ratio)

sage: p(x,y,z) = 2 - (cos(x + T*y) + cos(x - T*y) + cos(y + T*z) + cos(y - T*z) + cos(z - T*x) + cos(z + T*x))

sage: r = 4.77

sage: implicit_plot3d(p, (x, -r, r), (y, -r, r), (z, -r, r), plot_points=40)

sage: implicit_plot3d(p==1, (x, -r, r), (y, -r, r), (z, -r, r), plot_points=40, color=’green’)

<h2>Models</h2>

<p><strong>Problem:</strong> Plot Yoda.</p>

<p><strong>Solution:</strong> use a standard mesh one finds online as follows, which describes a model of Yoda that has over 50,000 triangles.&nbsp;&nbsp; Here we use the scipy module "io" to load the model, then use the IndexFaceSet 3d primitive to construct the 3d image from the triangulation data.</p>
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sage: # Yoda! (over 50,000 triangles)

sage: from scipy import io

sage: x = io.loadmat(DATA + ’yodapose.mat’)

sage: from sage.plot.plot3d.index_face_set import IndexFaceSet

sage: V = x[’V’]; F3=x[’F3’]-1; F4=x[’F4’]-1

sage: Y = IndexFaceSet(F3,V,color=Color(’#444444’)) + IndexFaceSet(F4,V,color=Color(’#007700’))

sage: Y = Y.rotateX(-1)

sage: Y.show(aspect_ratio=1, frame=False, zoom=1.2)

7.3 Matplotlib

<p>Though Sage provides its own functions (e.g,. plot, line, point, text, circle, etc.) for drawing 2d graphics, they are all very oriented toward visualizing the sorts of mathematical objects that come up in more pure mathematics (so more like Mathematica). &nbsp;For the sort of scientific visualizing that comes up in applications, the matplotlib library provides functionality that is very similar to Matlab for plotting. &nbsp; &nbsp; Also, matplotlib can be used on any major operating system without using Sage; it only depends on numpy, and has a very open license (BSD-compatible).&nbsp;</p>

<p>Also, if you’re drawing an image that involves a huge amount of data points, directly using matplotlib can be <em>more efficient</em> than using Sage’s plotting, since Sage’s plotting is built on top of matplotlib -- using matplotlib directly gets you closer to the metal.</p>

<h2>Important Caveat</h2>

<p>There are<strong> two absolutely critical</strong> things to remember when using matplotlib from Sage:</p>

<ol>

<li>Instead of <strong>plt.show()</strong> use <strong>plt.savefig(’a.png’). &nbsp;Memorize this now. &nbsp;</strong>This will make a nice smooth antialised png image of the plot appear in the Sage notebook. &nbsp; Using plt.show() may just do nothing in Sage, depending on your setup (it might also popup a window). &nbsp; You can also do <strong>plt.savefig(’a.pdf’)</strong> and <strong>plt.savefig(’a.svg’)</strong>.</li>

<li>You might have to put your input in a <strong>%python</strong> cell or turn off the preparser (by typing <strong>preparser(False)</strong>).</li>

</ol>

<p>With these two hints, you should be able to to try out the examples at <a href="http://matplotlib.sourceforge.net/gallery.html" target="_blank">http://matplotlib.sourceforge.net/gallery.html</a>. &nbsp;&nbsp;</p>

<p>In fact, try it now [in class, go to the above website, scroll, and let students choose an example]:</p>

<ol>

<li>Click on the thumbnail image.</li>

<li>Click source code in the upper left</li>

<li>Paste the code into a notebook cell.</li>

<li>Put <strong>%python</strong> as the first line of the cell.</li>

<li>Change any .show() to .savefig(’a.png’)</li>

</ol>

<p>Note: There are some images in the gallery that require some external data file (e.g, the brain image), so those won’t work.</p>

<p>For example, if students choose <a href="http://matplotlib.sourceforge.net/examples/api/artist_demo.html" target="_blank">the first example</a>, we get:</p>

sage: %hide

sage: %python

sage: """

sage: Show examples of matplotlib artists

sage: http://matplotlib.sourceforge.net/api/artist_api.html

sage: Several examples of standard matplotlib graphics primitives (artists)

sage: are drawn using matplotlib API. Full list of artists and the

sage: documentation is available at

sage: http://matplotlib.sourceforge.net/api/artist_api.html

sage: Copyright (c) 2010, Bartosz Telenczuk

sage: License: This work is licensed under the BSD. A copy should be

sage: included with this source code, and is also available at

sage: http://www.opensource.org/licenses/bsd-license.php

sage: """

sage: import numpy as np

sage: import matplotlib.pyplot as plt

sage: import matplotlib

sage: from matplotlib.collections import PatchCollection

sage: import matplotlib.path as mpath

sage: import matplotlib.patches as mpatches
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sage: import matplotlib.lines as mlines

sage: font = "sans-serif"

sage: fig = plt.figure(figsize=(5,5))

sage: ax = plt.axes([0,0,1,1])

sage: # create 3x3 grid to plot the artists

sage: pos = np.mgrid[0.2:0.8:3j, 0.2:0.8:3j].reshape(2, -1)

sage: patches = []

sage: # add a circle

sage: art = mpatches.Circle(pos[:,0], 0.1,ec="none")

sage: patches.append(art)

sage: plt.text(pos[0,0], pos[1,0]-0.15, "Circle", ha="center",

... family=font, size=14)

...

sage: # add a rectangle

sage: art = mpatches.Rectangle(pos[:,1] - np.array([0.025, 0.05]), 0.05, 0.1,

... ec="none")

...

sage: patches.append(art)

sage: plt.text(pos[0,1], pos[1,1]-0.15, "Rectangle", ha="center",

... family=font, size=14)

...

sage: # add a wedge

sage: wedge = mpatches.Wedge(pos[:,2], 0.1, 30, 270, ec="none")

sage: patches.append(wedge)

sage: plt.text(pos[0,2], pos[1,2]-0.15, "Wedge", ha="center",

... family=font, size=14)

...

sage: # add a Polygon

sage: polygon = mpatches.RegularPolygon(pos[:,3], 5, 0.1)

sage: patches.append(polygon)

sage: plt.text(pos[0,3], pos[1,3]-0.15, "Polygon", ha="center",

... family=font, size=14)

...

sage: #add an ellipse

sage: ellipse = mpatches.Ellipse(pos[:,4], 0.2, 0.1)

sage: patches.append(ellipse)

sage: plt.text(pos[0,4], pos[1,4]-0.15, "Ellipse", ha="center",

... family=font, size=14)

...

sage: #add an arrow

sage: arrow = mpatches.Arrow(pos[0,5]-0.05, pos[1,5]-0.05, 0.1, 0.1, width=0.1)

sage: patches.append(arrow)

sage: plt.text(pos[0,5], pos[1,5]-0.15, "Arrow", ha="center",

... family=font, size=14)

...

sage: # add a path patch

sage: Path = mpath.Path

sage: verts = np.array([

... (0.158, -0.257),

... (0.035, -0.11),
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... (-0.175, 0.20),

... (0.0375, 0.20),

... (0.085, 0.115),

... (0.22, 0.32),

... (0.3, 0.005),

... (0.20, -0.05),

... (0.158, -0.257),

... ])

...

sage: verts = verts-verts.mean(0)

sage: codes = [Path.MOVETO,

... Path.CURVE4, Path.CURVE4, Path.CURVE4, Path.LINETO,

... Path.CURVE4, Path.CURVE4, Path.CURVE4, Path.CLOSEPOLY]

...

sage: path = mpath.Path(verts/2.5+pos[:,6], codes)

sage: patch = mpatches.PathPatch(path)

sage: patches.append(patch)

sage: plt.text(pos[0,6], pos[1,6]-0.15, "PathPatch", ha="center",

... family=font, size=14)

...

sage: # add a fancy box

sage: fancybox = mpatches.FancyBboxPatch(

... pos[:,7]-np.array([0.025, 0.05]), 0.05, 0.1,

... boxstyle=mpatches.BoxStyle("Round", pad=0.02))

...

sage: patches.append(fancybox)

sage: plt.text(pos[0,7], pos[1,7]-0.15, "FancyBoxPatch", ha="center",

... family=font, size=14)

...

sage: # add a line

sage: x,y = np.array([[-0.06, 0.0, 0.1], [0.05,-0.05, 0.05]])

sage: line = mlines.Line2D(x+pos[0,8], y+pos[1,8], lw=5.,

... alpha=0.4)

...

sage: plt.text(pos[0,8], pos[1,8]-0.15, "Line2D", ha="center",

... family=font, size=14)

...

sage: colors = 100*np.random.rand(len(patches))

sage: collection = PatchCollection(patches, cmap=matplotlib.cm.jet, alpha=0.4)

sage: collection.set_array(np.array(colors))

sage: ax.add_collection(collection)

sage: ax.add_line(line)

sage: ax.set_xticks([])

sage: ax.set_yticks([])

sage: plt.savefig(’a.png’)

<h2>Pyplot</h2>

<p>Matplotlib has an interface that works much like Matlab. &nbsp;This will be very helpful if you know Matlab, and of some value otherwise since there is a lot of Matlab code and documentation out there. This mode is called "pyplot", and there is a now tutorial for it at h<a href="http://matplotlib.sourceforge.net/users/pyplot_tutorial.html" target="_blank">ttp://matplotlib.sourceforge.net/users/pyplot_tutorial.html</a>. &nbsp;</p>

<p>Below we replicate several examples from this tutorial in Sage, and you should read this tutorial. &nbsp;The main point you should realize when looking at these examples is how easily one can express scientific data visualization in terms of this interface; many equivalent plots are possibly directly with Sage’s plotting commands, but they are less natural.</p>

sage: import matplotlib.pyplot as plt

sage: plt.clf()
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sage: plt.plot([1,2,3,4])

sage: plt.ylabel(’some numbers’)

sage: plt.savefig(’a.png’, dpi=70)

sage: plt.clf()

sage: plt.plot([1,2,3,4], [1,4,9,16])

sage: plt.savefig(’a.png’, dpi=70)

sage: plt.clf()

sage: # ’ro’ = red circles, like in MATLAB; ’bx’ = blue crosses.

sage: plt.plot([1,2,3,4], [1,4,9,16], ’ro’, [5,5.5], [2,2], ’bx’)

sage: plt.axis([0, 6, 0, 20])

sage: plt.savefig(’a.png’, dpi=70)

<h3>Use Numpy instead of Python lists:</h3>

sage: import numpy as np

sage: plt.clf()

sage: # evenly sampled time at 200ms intervals

sage: t = np.arange(0., 5., 0.2)

sage: # red dashes, blue squares and green triangles

sage: plt.plot(t, t, ’r--’, t, t**2, ’bs’, t, t**3, ’g^’)

sage: plt.savefig(’a.png’, dpi=70)

<p>Multiple figures and axis all at once:</p>

sage: import numpy as np

sage: import matplotlib.pyplot as plt

sage: def f(t):

... return np.exp(-t) * np.cos(2*np.pi*t)

...

sage: t1 = np.arange(0.0, 5.0, 0.1)

sage: t2 = np.arange(0.0, 5.0, 0.02)

sage: plt.clf()

sage: plt.figure(1)

sage: plt.subplot(121)

sage: plt.plot(t1, f(t1), ’bo’, t2, f(t2), ’k’)

sage: plt.subplot(122)

sage: plt.plot(t2, np.cos(2*np.pi*t2), ’r--’)

sage: plt.savefig(’a.png’)

<p>An example involving text</p>

sage: import numpy as np

sage: import matplotlib.pyplot as plt

sage: plt.clf()

sage: mu, sigma = 100, 15

sage: x = mu + sigma * np.random.randn(10000)

sage: # the histogram of the data

sage: n, bins, patches = plt.hist(x, 50, normed=1, facecolor=’g’, alpha=0.75)

sage: plt.xlabel(’Smarts’)

sage: plt.ylabel(’Probability’) # bug -- gets chopped out below :-(

sage: plt.title(’Histogram of IQ’)

sage: plt.text(60, .025, r’$\mu=100,\ \sigma=15$’)

sage: plt.axis([40, 160, 0, 0.03])

sage: plt.grid(True)

sage: plt.savefig(’a.png’, dpi=70)

<p>Incidentally, you can of course combine matplotlib graphics with @interact</p>
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sage: import numpy as np

sage: import matplotlib.pyplot as plt

sage: plt.clf()

sage: mu, sigma = 100, 15

sage: x = mu + sigma * np.random.randn(10000)

sage: @interact

sage: def f(bins=(5..150)):

... plt.clf()

... n, bins, patches = plt.hist(x, bins, normed=1, facecolor=’g’, alpha=0.75)

... plt.xlabel(’Smarts’, fontsize=18, color=’red’)

... plt.ylabel(’Probability’) # bug -- gets chopped out below

... plt.title(’Histogram of IQ’)

... plt.text(60, .025, r’$\mu=100,\ \sigma=15$’) # latex!

... plt.axis([40, 160, 0, 0.03])

... plt.grid(True)

... plt.savefig(’a.png’, dpi=70)

<p>Annotation Example</p>

sage: import numpy as np

sage: import matplotlib.pyplot as plt

sage: plt.clf()

sage: ax = plt.subplot(111)

sage: t = np.arange(0.0, 5.0, 0.01)

sage: s = np.cos(2*np.pi*t)

sage: line, = plt.plot(t, s, lw=2)

sage: plt.annotate(’local max’, xy=(2, 1), xytext=(3, 1.5),

... arrowprops=dict(facecolor=’black’, shrink=0.07))

...

sage: plt.ylim(-2,2)

sage: plt.savefig(’a.png’)

<p>There are tons of other examples of pyplot at the matplotlib website here: <a href="http://matplotlib.sourceforge.net/examples/pylab_examples/" target="_blank">http://matplotlib.sourceforge.net/examples/pylab_examples/</a></p>

<p>For example we have the following economics example:</p>

sage: """

sage: make a scatter plot with varying color and size arguments

sage: """

sage: import matplotlib

sage: import numpy as np

sage: import matplotlib.pyplot as plt

sage: import matplotlib.mlab as mlab

sage: import matplotlib.cbook as cbook

sage: # load a numpy record array from yahoo csv data with fields date,

sage: # open, close, volume, adj_close from the mpl-data/example directory.

sage: # The record array stores python datetime.date as an object array in

sage: # the date column

sage: datafile = cbook.get_sample_data(’goog.npy’)

sage: r = np.load(datafile).view(np.recarray)

sage: r = r[-250:] # get the most recent 250 trading days

sage: delta1 = np.diff(r.adj_close)/r.adj_close[:-1]

sage: # size in points ^2

sage: volume = (15*r.volume[:-2]/r.volume[0])**2

sage: close = 0.003*r.close[:-2]/0.003*r.open[:-2]
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sage: fig = plt.figure()

sage: ax = fig.add_subplot(111)

sage: ax.scatter(delta1[:-1], delta1[1:], c=close, s=volume, alpha=0.75)

sage: #ticks = arange(-0.06, 0.061, 0.02)

sage: #xticks(ticks)

sage: #yticks(ticks)

sage: ax.set_xlabel(r’$\Delta_i$’, fontsize=20)

sage: ax.set_ylabel(r’$\Delta_{i+1}$’, fontsize=20)

sage: ax.set_title(’Volume and percent change’)

sage: ax.grid(True)

sage: plt.savefig(’a.png’)

<h2>There is more to matplotlib than just pyplot...</h2>

<p>There is more to matplotlib than just a Matlab like interface. &nbsp; &nbsp;Matplotlib has its own library interface, primitives, etc., which are documented here: <a href="http://matplotlib.sourceforge.net/contents.html" target="_blank">http://matplotlib.sourceforge.net/contents.html</a>. &nbsp;Also, there is an strong community with much momentum behind matplotlib development. &nbsp;It is the <em>de facto</em> standard for 2d plotting in Python, and it keeps getting better.</p>

<h2>A 3d Example</h2>

<p>This is basically this example: <a href="http://matplotlib.sourceforge.net/examples/mplot3d/surface3d_demo.html" target="_blank">http://matplotlib.sourceforge.net/examples/mplot3d/surface3d_demo.html</a></p>

sage: %python

sage: from mpl_toolkits.mplot3d import Axes3D

sage: from matplotlib import cm

sage: from matplotlib.ticker import LinearLocator, FixedLocator, FormatStrFormatter

sage: import matplotlib.pyplot as plt

sage: import numpy as np

sage: fig = plt.figure()

sage: ax = fig.gca(projection=’3d’)

sage: X = np.arange(-7, 7, 0.25)

sage: Y = np.arange(-7, 7, 0.25)

sage: X, Y = np.meshgrid(X, Y)

sage: R = np.sqrt(X**2 + Y**2)

sage: Z = np.sin(R)

sage: surf = ax.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap=cm.jet,

... linewidth=0, antialiased=False)

...

sage: ax.set_zlim3d(-1.01, 1.01)

sage: ax.w_zaxis.set_major_locator(LinearLocator(10))

sage: ax.w_zaxis.set_major_formatter(FormatStrFormatter(’%.03f’))

sage: fig.colorbar(surf, shrink=0.5, aspect=5)

sage: plt.savefig(’a.png’)
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Chapter 8

Number Theory

8.1 Prime Numbers and the Riemann Hypothesis

8.1.1 Primes

An integer p ≥ 2 is prime if its only divisors are 1 and p. For example, the first few
primes are

2, 3, 5, 7, 11, 13, 17, 19, . . . .

You can find primes in Sage using the prime_range command:

sage: prime_range (10)

[2, 3, 5, 7]

sage: prime_range (7, 23)

[7, 11, 13, 17, 19]

sage: range(7, 23)

[7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22]

sage: prime_range (100)

[2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59,

61, 67, 71, 73, 79, 83, 89, 97]

Note that prime_range works like the range command, in that it doesn’t include its
upper endpoint. There is also an iterator over the prime numbers called primes:

sage: P = primes (10^100); P

<generator object primes at 0x5a49280 >

sage: for p in P:

... print p

... if p > 10: break

2

3

5

7

11

Though memory efficient, the primes iterator can be much slower than prime_range

since it uses a different algorithm and caching strategy.

sage: v = list(primes (10^6)) # this will take much longer
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sage: v = prime_range (10^6) # than this takes

Mankind has been fascinated with prime number for thousands of years.

Theorem 8.1.1 (Euclid). There are infinitely many prime numbers.

Proof. This is easier to prove than you might guess. We will describe an algorithm that
takes as input a finite list p1, . . . , pk of primes, and outputs a prime not in this list.
The existence of this algorithm implies that there must be infinitely many primes. The
algorithm works as follows. First, let n = p1p2 · · · pk + 1. It is easy to see by induction
that every integer ≥ 2 is divisible by some prime; in particular, n is divisible by some
prime q (for concreteness, take q to be the smallest prime divisor of n). But n is not
divisible by any pi, since if you divide n by pi the remainder is 1. Thus q 6= pi for any
i, so q is the new prime output by our algorithm.

The number p = 243112609 − 1 is a prime number with 12978189 digits.

sage: p = 2^43112609 - 1

sage: k = p.digits (10) # long time: about 20 seconds

sage: len(k)

12978189

As of May 2011, it is the largest explicitly known prime number. The people (the
GIMPS project) who found the prime p above won a $100,000 prize from the Electronic
Frontier Foundation (EFF) for finding this prime (the first known prime with more than
10 million digits), and the EFF offers $150,000 to anybody who can explicitly exhibit a
prime with at least 100 million digits.

In Sage we can test whether or not a number is prime using the is_prime function.
There is also a function is_pseudoprime, which is potentially much, much, much faster,
but in theory could claim a number to be composite even though it is prime (there are
no known examples of this, but it surely happens).

sage: is_prime (2011)

True

sage: is_prime (2009)

False

sage: is_pseudoprime (2009)

False

The commands next_prime and next_probable_prime find the next prime (or pseu-
doprime) after a number.

sage: n = next_probable_prime (10^300)

sage: is_pseudoprime(n) # takes about 0.01 seconds

True

sage: is_prime(n) # long time -- about 10 seconds!

True

8.1.2 Factorization

Theorem 8.1.2 (Euclid). “The Fundamental Theorem of Arithmetic” Every positive
integer factors uniquely as a product of primes pe11 · · · perr .
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This is much harder to prove than you might at first guess, since there are other
rings, which are very similar to the ring of integers, but where this statement fails. For
example, consider the ring R = Z[

√
−5]. Here we have

6 = 2 · 3 = (1 +
√
−5)(1−

√
−5),

which exhibits two different factorizations of 6 into elements that cannot be factored
further. For a proof of Theorem 8.1.2, see Chapter 1 of the book Elementary Number
Theory: Primes, Congruences, and Secrets, which is freely available at http://wstein.
org/ent/.

It is not known whether or not there is a fast (“polynomial time”) algorithm to factor
integers, though many people suspect that there is no such algorithm on a classical
computer. (There is a quantum algorithm to factor quickly using quantum computers;
unfortunately, it may not be possible to build a sufficiently powerful quantum computer.)

In Sage, use the command factor to factor an integer.

sage: factor (2012)

2^2 * 503

sage: factor (10^50 + 4)

2^2 * 13 * 89 * 21607605877268798617113223854796888504753673293

The output of the factor command looks like a factorization, but you can work with it
as if it were a list of prime-exponent pairs (p, e).

sage: v = factor (10^50 + 4); v

2^2 * 13 * 89 * 21607605877268798617113223854796888504753673293

sage: v[0]

(2, 2)

sage: v[1]

(13, 1)

sage: len(v)

4

sage: list(v)

[(2, 2), (13, 1), (89, 1),

(21607605877268798617113223854796888504753673293 , 1)]

The factor command also has a verbose= option, which if set to 4 or 8 produces
a huge amount of output about the factoring algorithms that are being used. (I do not
know a good place to read about the format of the verbose= output, except for reading
the source code of PARI, which implements the underlying factorization algorithm in
Sage, at present.)

sage: factor (10^50 + 4, verbose =8)

OddPwrs: is 2276944211802351761945170668051973

...a 3rd , 5th , or 7th power?

modulo: resid. (remaining possibilities)

211: 88 (3rd 1, 5th 1, 7th 0)

209: 34 (3rd 0, 5th 1, 7th 0)

61: 30 (3rd 0, 5th 0, 7th 0)

OddPwrs: examining 2276944211802351761945170668051973

*** Warning: IFAC: untested integer declared prime.

2276944211802351761945170668051973

Starting APRCL: Choosing t = 840
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Solving the triangular system

Solving the triangular system

Jacobi sums and tables computed

Step4: q-values (# = 14): 421 281 211 71 61 43 41 31 29 13 11 7 5 3

Step5: testing conditions lp

Step6: testing potential divisors

Individual Fermat powerings:

2 : 7

3 : 7

4 : 8

5 : 8

7 : 6

8 : 2

Number of Fermat powerings = 38

Maximal number of nondeterministic steps = 0

2^2 * 13 * 89 * 21607605877268798617113223854796888504753673293

8.1.3 Counting Primes

Trying to understand how prime numbers are distributed is a problem that has intrigued
mathematicians for hundreds of years. To make this question precise, we introduce the
function π(x), which counts the number of primes up to x:

π(x) = #{p : p ≤ x is prime}.

For example,
π(10) = #{2, 3, 5, 7} = 4.

Use prime_pi to compute with π(x) in Sage.

sage: prime_pi (10)

4

sage: prime_pi (10.7)

4

sage: prime_pi (100)

25

sage: prime_pi (1000)

168

You can count more primes than you might at first suspect:

sage: prime_pi (10^11) # takes about 1 second

4118054813

The plot of π(x) looks like a staircase:

sage: plot(prime_pi , 1, 100)
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Based on heuristic evidence and numerical data, people conjectured (in the 1700s)
that the bumpy staircase π(x) behaves somewhat like the nice smooth function x/ log(x).
The Prime Number Theorem makes this precise; it is one of the deepest and most
important theorems we have about π(x), and its proof is quite difficult.

Theorem 8.1.3 (Prime Number Theorem). We have π(x) ∼ x/ log(x), which means
that

lim
x→∞

x/ log(x)

π(x)
= 1.

This theorem means that if you want to use x/ log(x) to estimate say 10 digits of
π(x), then there is definitely some B such that for all x ≥ B, we have that π(x) and
x/ log(x) have at least the same first 10 digits. However, the theorem itself makes no
explicit claim about what B is; maybe it is 1030, or maybe it is 101000.

There is conjecturally a vastly better smooth function that estimates π(x), which is
the special function Li(x):

Li(x) =

∫ x

2

t.
log(t)

.

The following conjecture is widely believed, but so far nobody has a clue how to prove
it.

Conjecture 8.1.4 (Riemann Hypothesis). For all x > 2.01, we have

|π(x)− Li(x)| ≤
√
x · log(x).

In other words, if we estimate π(x) using Li(x), then about half of the digits will be
right. Moreover, there is no limit here; this is a statement about all x > 2.01, which is
really amazing.

Some consider this conjecture to be the most important unsolved problem in math-
ematics. For example, it was selected as one of the Clay Mathematics Institute million
dollar prize problems: http://www.claymath.org/millennium/Riemann_Hypothesis/

We illustrate the above conjecture using Sage.

sage: def rh(x):

... pp = prime_pi(x)

... print ’pi(x) = %10.1f’%pp

... print ’Li(x) = %10.1f’%Li(x)

... print ’x/log(x) = %10.1f’%(x/math.log(x))

... print ’sqrt(x)*log(x)= %10.1f’%(math.sqrt(x)*math.log(x))

... print ’|pi(x)-Li(x)| = %10.1f’%abs(pp - Li(x))

... print ’|pi(x)-x/l(x)|= %10.1f’%abs(pp - x/math.log(x))
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...

sage: rh (10^9)

pi(x) = 50847534.0

Li(x) = 50849233.9

x/log(x) = 48254942.4

sqrt(x)*log(x)= 655327.2

|pi(x)-Li(x)| = 1699.9

|pi(x)-x/l(x)|= 2592591.6

The following plot illustrates Conjecture 8.1.4. In the plot π(x) and Li(x) are visibly
on top of each other!

sage: x = var(’x’)

sage: B = 10^5

sage: G = (plot(prime_pi , 2, B) + plot(Li, 2, B, color=’red’)

... + plot(x/log(x), 2, B, color=’green’))

sage: G += plot(lambda x: prime_pi(x) - math.sqrt(x)*math.log(x),

... 2, B, color=’black’)

sage: G += plot(lambda x: prime_pi(x) + math.sqrt(x)*math.log(x),

... 2, B, color=’black’)

sage: G

2e4 4e4 6e4 8e4 1e5
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4000

6000

8000

10000

12000

Conjecture 8.1.4 is typically stated in terms of a complex analytic function called
the Riemann Zeta function.

ζ(s) =

∞∑
n=1

1

ns
=

∏
primes p

1

1− p−s
.

The function ζ(s) has a (uniquely determined) analytic continuation to C \ {1}, and a
simple pole at s = 1. In Sage, you can evaluate it anywhere using the command zeta:

sage: zeta (2)

1/6*pi^2

sage: zeta (3+I)

zeta(I + 3)
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Use the N command or coercion to CC (the complex field) to give a numerical answer.

sage: CC(zeta (3+I))

1.10721440843141 - 0.148290867178175*I

sage: zeta(CC(3+I))

1.10721440843141 - 0.148290867178175*I

sage: N(zeta (3+I))

1.10721440843141 - 0.148290867178175*I

sage: N(zeta (3+I), 100)

1.1072144084314091956251002058 - 0.14829086717817534849076412567*I

An equivalent version of Conjecture 8.1.4 is the following statement about where the
function ζ(s) takes the value 0.

Conjecture 8.1.5. The zeros of ζ(s) with Re(s) ≥ 0 all satisfy Re(s) = 1/2.

We can draw several plots of ζ(s), some of which illustrate the zeros of ζ(s).

sage: complex_plot(zeta , (-30,30), (-30,30))

-30 -20 -10 10 20 30

-30

-20

-10

10

20

30

sage: plot(lambda y: abs(zeta (1/2+I*y)), (0 ,50))

10 20 30 40 50

0.5

1
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2.5
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3.5
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sage: plot3d(lambda x, y: abs(zeta(x+I*y)), (.2,.7), (0,50),

... plot_points =100)

8.2 Public-Key Cryptography: Diffie-Hellman

(for this section, there is a lot more in my handwritten notes...)

<p>Naive modular exponentiation is not good.</p>

sage: 7^11

1977326743

sage: (7^11) % 13

2

<p>But Sage implements a vastly better algorithm.&nbsp;</p>

sage: a = Mod(18, 11); a

7

sage: type(a)

<type ’sage.rings.finite_rings.integer_mod.IntegerMod_int’>

sage: parent(a)

Ring of integers modulo 11

sage: 18 % 11

7

sage: parent(18 % 11)

Integer Ring

sage: type(18 % 11)

<type ’sage.rings.integer.Integer’>

sage: a^139299208340283408230482348032984023948

9

<p>Here is a bigger example.</p>

sage: p = next_prime(10^100); p

10000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000267

sage: g = Mod(2, p)

sage: a = ZZ.random_element(p); a
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3899462984078586138445766211121799052200774540320148812825084038333387229965957683578348930338929160

sage: g^a

7947388754511516576098430442932357966776257289140614732345836374084514192683933294095474801360397543

sage: timeit(’g^a’)

625 loops, best of 3: 71.1 s per loop

<p>We illustrate the Diffie-Hellman key exchange.</p>

sage: @interact

sage: def _(bits=(5..1024), g=2, seed=(0..100)):

... t = cputime()

... set_random_seed(seed)

... p = next_prime(2^(bits-1))

... print "<html>"

... print "p = %s"%p

... a = ZZ.random_element(p)

... b = ZZ.random_element(p)

... print "a = %s"%a

... print "b = %s"%b

... g = Mod(g, p)

... print "g^a (mod p) = %s"%(g^a)

... print "g^b (mod p) = %s"%(g^b)

... print "secret = %s = %s"%((g^a)^b, (g^b)^a)

... print "total time = %s seconds"%cputime(t)

... print "</html>"

sage: time next_probable_prime (2^(1024-1))

89884656743115795386465259539451236680898848947115328636715040578866337902750481566354238661203768010560056939935696678829394884407208311246423715319737062188883946712432742638151109800623047059726541476042502884419075341171231440736956555270413618581675255342293149119973622969239858152417678164812112069763

Time: CPU 0.21 s, Wall: 0.21 s

<p>References:</p>

<ol>

<li>For math -- see <a href="http://wstein.org/ent " target="_blank">http://wstein.org/ent&nbsp;</a>(chapter 3).</li>

<li>More on cryptography using Sage -- see the book by David Kohel that is <a href="http://sagemath.org/library-publications.html#books" target="_blank">listed here</a>.</li>

<li>There is a library called <a href="http://www.dlitz.net/software/pycrypto/" target="_blank">PyCrypto</a> that is included with Sage.&nbsp;</li>

</ol>

8.3 Elliptic Curves and the Birch and Swinnerton-
Dyer Conjecture

8.3.1 Fields

A field is a set of objects equipped with rules for multiplication and addition that satisfy
certain axioms (for example, every nonzero element has an inverse). Standard examples
of fields include the field C of all complex numbers and the field Q of all rational
numbers. Also, for every prime number p we have the finite field

Fp = {0, 1, 2, . . . , p− 2, p− 1}

of numbers modulo p. In the field Fp, arithmetic is defined by multiply or adding two
numbers, then taking the remainder modulo p.
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8.3.2 Elliptic Curves

Definition 8.3.1 (Elliptic Curve). An elliptic curve over a field K is a curve defined
by an equation y2 = x3 + ax + b with a, b ∈ K such that the cubic x3 + ax + b has
distinct roots; equivalently, the discriminant −4a3 − 27b2 of the cubic is nonzero.

Suppose now that E is an elliptic curve over a field K. Then the set of K-rational
points on E is

E(K) = {(X,Y ) ∈ K ×K : Y 2 = X3 + aX + b} ∪ {O}.

The extra point O should be thought of as being “at infinity” and is included since we
view E as a curve in the “projective plane”.

There is a natural way to define a way off adding together two elements P,Q ∈ E(K)
to get another element R = P +Q ∈ E(K), thus generating possibly new points. This is
the “chord and tangent” procedure; the following diagram illustrates using it to compute
R = P +Q = (0, 1) + (−1, 0) = (2,−3).

sage: E = EllipticCurve ([0 ,1])

sage: P = E([0 ,1]); Q = E([ -1,0]); R = P+Q; mR = -R

sage: G = E.plot (-1.5,2.5, plot_points =300)

sage: v = [(0,1), (-1,0), (2,-3), (2 ,3)]

sage: G += points(v, pointsize =50, color=’black ’)

sage: G += line ([(-1.5,-.5), (2.5 ,3.5)] , color=’red’)

sage: G += text("P", (-1.2,.3), color=’black ’)

sage: G += text("Q", (-.3,1.3), color=’black ’)

sage: G += text("-R", (1.8 ,3.2) , color=’black ’)

sage: G += text("R=P+Q", (1.3, -2.85), color=’black ’)

sage: G += line ([(2 ,3.5) , (2,-3.5)], color=’green ’)

sage: G.show(gridlines=True , aspect_ratio =1)
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When K = Q is the rational numbers, there is an amazing theorem about E(K).

Theorem 8.3.2 (Mordell). Let E be any elliptic curve over Q. Then there are finitely
many points P1, . . . , Pk in E(Q) such that every point in E(Q) is of the form n1P1 +
· · ·+ nkPk for some integers n1, . . . , nk ∈ Z.

Mordell’s theorem means that E(Q) is a finitely generated abelian group, so E(Q)
is isomorphic to Zr ⊕ T , for some finite group T , and some nonnegative integer r. The
number r = rank(E) is called the rank of E and is a fundamental and mysterious
invariant of E.

Open Problem 8.3.3. Give an algorithm that takes as input an elliptic curve E over
Q and outputs the rank of E.

Problem 8.3.3 goes back over 1000 years, making it perhaps the oldest “interesting”
problem in all of mathematics, where the problem is interesting because of its connec-
tions to many ideas in modern number theory, and the numerous partial results that
mathematicians have obtained. In particular, around 1000 years ago the Arabs asked
for an algorithm to decide whether or not an integer n is the area of a rational right
triangle, i.e., a right triangle all three of whose side lengths are rational numbers. The
connection with Problem 8.3.3 arises because n is the area of a rational right triangle if
and only if the rank of the elliptic curve y2 = x3 + n2x is positive.

8.3.3 Birch and Swinnerton-Dyer

In the 1960s two British mathematicians, Bryan Birch and Sir Peter Swinnerton-Dyer
(BSD), had an amazing idea related to Problem 8.3.3. After a huge amount of work
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and difficult hard won 1960s computer use, they obtained precise data relating two
quantities for many elliptic curves. Let Np = #E(Fp), where #E(Fp) is the number of
points on the elliptic curve obtained by reducing the equation that defines E modulo p,
when this makes sense.

rank(E)←→ fE(M),

where

fE(M) =
∏

good primes p<M

Np

p
.

This function is something that is dramatically simpler to contemplate computing than
rank(E). You simply reduce the equation that defines E modulo p, and count all the
solutions modulo p to the reduced equation. It is easy to come up with a (slow) algorithm
to do that for any given p.

Birch explaining the conjecture in Cambrige on May 4, 2011

We will compute fE(M) in Sage using the following:

def f(E,M):

N = E.conductor ()

return prod(E.Np(p)/float(p) for p in primes(M) if N%p)

BSD considered mainly curves of the form y2 = x3 + b, with b an integer. For
example, we have the following table for various values of b:

for b in [1,2,-11,-6,316]:

E = EllipticCurve ([0,b])

v = (b, E.rank(), f(E,10^3) , f(E,10^4) , f(E ,10^6))

print ’%4s%4s%10.3f%10.3f%10.3f’%v

1 0 1.895 2.060 1.849

2 1 6.804 8.735 11.693

-11 2 36.523 49.215 143.102

-6 0 0.461 0.551 1.013

316 3 100.158 261.144 879.231
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Here is a photo I snapped of the very piece of paper on which BSD came up with
the basic idea of matching the ranks up with the behavior of fE(M) (do not ask me to
explain it):

What they found was that by eyeballing the plots of fE(M), they were able in
practice to predict the rank. Incidentally, we can plot fE(M) in Sage using the following
code:

def f_plot(E, M, **kwds):

N = E.conductor ()

v = [(0 ,1)]

pr = 1

for p in primes(M):

if N%p:

pr *= E.Np(p)/float(p)

v.append ((p, v[ -1][1]))

v.append ((p, pr))

return line(v, **kwds)

B = 10^5

show(f_plot(EllipticCurve ([0,1]), B, color=’red’) +

f_plot(EllipticCurve ([0,2]), B, color=’blue’) +

f_plot(EllipticCurve ([0,-11]), B, color=’green ’) +

f_plot(EllipticCurve ([0,-6]), B, color=’orange ’) +

f_plot(EllipticCurve ([0 ,316]) , B, color=’purple ’)

)
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I hope you will agree that looking at the above pictures suggests the rank... but
certainly doesn’t feel rock solid and precise. Fortunately, there is another approach to
the same problem that involves an object much like the Riemann Zeta function, which
appeared above in Section 8.3.

Fix an elliptic curve E. For each prime number p, set ap = p+ 1−Np. Let

L∗(E, s) =
∏
p

1

1− app−s + p1−2s
. (8.3.1)

Remark 8.3.4. There is also a way to define factors for all primes p, and one obtains
a function that we denote L(E, s). For the conjecture we make below, it makes no
difference whether we use L∗(E, s) or L(E, s).

A big theorem proved in 2000, but proved in many special cases already in 1960s is:

Theorem 8.3.5. The function L(E, s) has a unique analytic continuation to the whole
complex plane.

In other words, despite the right hand side of (8.3.1) possibly not converging, there
is a natural and meaningful “nice” way of making sense of L(E, s) for any complex
number s. The reason L(E, s) is so relevant to the function fE(M) that we considered
above is that formally1

L(E, 1)“ = ”
∏
p

1

1− app−1 + p1−2
=
∏
p

p

p− ap + 1
=
∏
p

p

Np
“ =

1

fE(∞)
”.

Motivated by the above formal observation and their other data, BSD made the
following conjecture:

Conjecture 8.3.6 (Birch and Swinnerton-Dyer). Let E be an elliptic curve over Q.
Then

ords=1 L(E, s) = rank(E).

This is a Clay Million Dollar prize problem: http://www.claymath.org/millennium/
Birch_and_Swinnerton-Dyer_Conjecture/.

The work of many, many people over several decades has resulted in the following
theorem:

Theorem 8.3.7. If ords=1 L(E, s) ≤ 1, then Conjecture 8.3.6 holds for E.

Sage is good at computing with L(E, s). For example,

1And in fact this equality is probably true only true up to a factor of
√

2...
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sage: E = EllipticCurve ([0,-6])

sage: L = E.lseries (). dokchitser ()

sage: L(2)

0.970573503589685

sage: L(1)

1.80166139420421

sage: L(1+I)

1.37330247586099 + 0.672104565160637*I

sage: L.taylor_series (1, 5)

1.80166139420421 - 4.34358857895219*z + 10.6996108328594*z^2

- 16.6581015345210*z^3 + 17.7188237405279*z^4 + O(z^5)

Here is an example of rank 2:

sage: E = EllipticCurve ([0 ,-11])

sage: L = E.lseries (). dokchitser ()

sage: L.taylor_series (1, 5)

2.66270802215019e-23 + ( -6.18778237886993e -23)*z

+ 5.92327478382316*z^2 - 13.7649096437350*z^3

+ 17.0105571907034*z^4 + O(z^5)

Finally, here is an example of rank 3:

sage: E = EllipticCurve ([0 ,316])

sage: E.rank()

sage: L = E.lseries (). dokchitser ()

sage: L.taylor_series (1, 5)

(8.21208956591497e-23)*z + ( -3.64556152695356e-22)*z^2

+ 25.3581351256025*z^3 - 112.571399845523*z^4 + O(z^5)

sage: E.analytic_rank () # order of vanishing of L

3

Though we can numerically evaluate L(E, s) at any point to any number of digits,
we do not have a way in general to provably compute ords=1 L(E, s). For example, we
may suspect that ords=1 L(E, s) = 4 since numerically to 10,000 digits (say) we find
that L(k)(E, 1) = 0.00000... for k = 0, 1, 2, 3, but this is not a proof.

Open Problem 8.3.8. Verify with proof Conjecture 8.3.6 for one single elliptic curve
of rank 4, e.g., for the curve y2 = x3 − 102627x+ 12560670.
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Chapter 9

Statistics

9.1 Using R with Sage

TODO:

<p>See <a href="http://rpy.sourceforge.net/rpy2/doc-2.0/html/introduction.html" target="_blank">http://rpy.sourceforge.net/rpy2/doc-2.0/html/introduction.html</a>. &nbsp;</p>

sage: %auto

sage: import rpy2.robjects as robjects

sage: R = robjects.r

<p>We get pi from the R namespace.</p>

sage: v = R[’pi’]; v

<RVector - Python:0x433e320 / R:0x4fd90c8>

<p>Note that we have to explicitly use print to see a nice representation:</p>

sage: print v

[1] 3.141593

<p>There is a pexpect interface to r called "r" by default when you start Sage. &nbsp;This tutorial is not about that interface, but instead about the C library interface called rpy2, which is much faster and more robust.</p>

sage: r

R Interpreter

sage: r(’2 + 3’) # the pexpect interface

[1] 5

sage: import rpy2.robjects as robjects

sage: R = robjects.r

sage: print R(’2 + 3’) # the rpy2 cython interface (note the import!)

[1] 5

sage: R("""

sage: a = 5

sage: b = 7

sage: c = a + b""")

sage: print R("c")

[1] 12

sage: timeit("r(’2+3’)")

625 loops, best of 3: 1.44 ms per loop

sage: timeit("R(’2+3’)")

625 loops, best of 3: 650 s per loop

sage: timeit("pari(’2+3’)")

625 loops, best of 3: 5.72 s per loop

<p>(frankly, I’m shocked at how slow the rpy2 interface actually is...!)</p>
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<p>This is how to get started with rpy2:</p>

<p>Beware the preparser:</p>

sage: v = R[’pi’]; v

<RVector - Python:0x433ec20 / R:0x4fd90c8>

sage: print v

[1] 3.141593

sage: repr(v)

’<RVector - Python:0x433dcf8 / R:0x48e3178>’

sage: str(v)

’[1] 3.141593’

sage: w = v + int(1); print w

[1] 3.141593 1.000000

sage: w[0]

3.1415926535897931

sage: v + 3

Traceback (most recent call last):

...

ValueError: Nothing can be done for the type <type ’sage.rings.integer.Integer’> at the moment.

<p>And note again that v is a vector not a number.</p>

sage: print v + int(3)

[1] 3.141593 3.000000

sage: print v[0] + int(3)

6.14159265359

<p>WARNING: &nbsp;Python indexing starts at 0 and R indexing starts at 1.</p>

sage: print R(’c(5,2,-3)[1]’)

[1] 5

sage: timeit(’R("f <- function(r) { 2 * pi * r }")’)

625 loops, best of 3: 460 s per loop

<p>Define a function in R:</p>

sage: R("f <- function(r) { 2 * pi * r }")

<RFunction - Python:0x433f440 / R:0x529ec00>

<p>Now call the function:</p>

sage: print R("f(3)")

[1] 18.84956

<p>The function is now defined in the global R namespace:</p>

sage: r_f = R[’f’]

sage: print r_f(int(3))

[1] 18.84956

sage: timeit(’r_f(int(3))’)

625 loops, best of 3: 41.4 s per loop

sage: print R("f")

function(r) { 2 * pi * r }

<p>Most R objects have a string representation that can be directly parsed by R, which can be handy.</p>

sage: letters = R[’letters’]

sage: print letters.r_repr()

c("a", "b", "c", "d", "e", "f", "g", "h", "i", "j", "k", "l",

"m", "n", "o", "p", "q", "r", "s", "t", "u", "v", "w", "x", "y",

"z")

<p>Here is an example of how we might use this:</p>
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sage: rcode = ’paste(%s, collapse="-")’ %(letters.r_repr())

sage: print R(rcode)

[1] "a-b-c-d-e-f-g-h-i-j-k-l-m-n-o-p-q-r-s-t-u-v-w-x-y-z"

sage: timeit(’robjects.IntVector(range(10))’)

625 loops, best of 3: 9.65 s per loop

sage: time w = robjects.IntVector(range(10^6))

Time: CPU 0.74 s, Wall: 0.74 s

sage: time print R[’mean’](w)

[1] 499999.5

Time: CPU 0.16 s, Wall: 0.17 s

sage: time print R[’sd’](w)

[1] 288675.3

Time: CPU 0.18 s, Wall: 0.18 s

sage: time w = r(range(10^3))

Time: CPU 1.12 s, Wall: 2.56 s

sage: time z = pari(range(10^6))

Traceback (most recent call last):

...

KeyboardInterrupt: evaluating PARI string

__SAGE__

<h2>Vectors</h2>

<p>Vectors are an important basic data structure in R:</p>

sage: print robjects.StrVector([’abc’, ’def’])

[1] "abc" "def"

sage: print robjects.IntVector([1, 2, 3])

[1] 1 2 3

sage: print robjects.FloatVector([1.1, 2.2, 3.3])

[1] 1.1 2.2 3.3

<p>You can also create R matrices, which are R vectors with a dim attribute:</p>

sage: v = robjects.FloatVector([1.1, 2.2, 3.3, 4.4, 5.5, 6.6])

sage: m = R[’matrix’](v, nrow = int(2))

sage: print m

[,1] [,2] [,3]

[1,] 1.1 3.3 5.5

[2,] 2.2 4.4 6.6

<h2>R functions</h2>

<p>The above illustrates how to call an R function. &nbsp;You get it from the R namespace, then call it in the standard way. &nbsp;Here’s another example:</p>

sage: v = robjects.IntVector([1..10])

sage: print R[’sum’]

function (..., na.rm = FALSE) .Primitive("sum")

sage: ans = R[’sum’](v)

sage: ans

<RVector - Python:0x4368368 / R:0x4e63188>

sage: print ans

[1] 55

sage: ans[0]

55

sage: R[’sum’](v)[0] # [0] since result is a vector of length 1

55

sage: R[’mean’](v)[0]
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5.5

sage: R[’sd’](v)[0]

3.0276503540974917

sage: sd = R[’sd’]

sage: timeit(’sd(v)’)

625 loops, best of 3: 280 s per loop

sage: timeit("R[’sd’](v)")

625 loops, best of 3: 237 s per loop

<p>You can also pass in keywords:</p>

sage: rsort = R[’sort’]

sage: print rsort(v, decreasing=True)

[1] 10 9 8 7 6 5 4 3 2 1

<p>GOTCHA: In R variable names with dots in them are allowed, but in Python they are not. &nbsp; The example below illustrates how to deal with this (use **kwds). &nbsp;In this example, we make an R vector with a "NA" in it, which means we don’t know that entry; the na.rm option to R’s sum command controls how it behaves on lists with NA’s in them.</p>

sage: v = R(’c(1,NA,2,3)’)

sage: print v

[1] 1 NA 2 3

sage: print R[’sum’]

function (..., na.rm = FALSE) .Primitive("sum")

sage: rsum = R[’sum’]

sage: print rsum(v)

[1] NA

<p>Directly in R, we would just type na.rm=TRUE. &nbsp;In Python this does not make sense.</p>

sage: print R(’sum( c(1,NA,2,3), na.rm=TRUE )’)

[1] 6

sage: print rsum(v, na.rm=True) # boom!

Traceback (most recent call last):

...

SyntaxError: keyword can’t be an expression

sage: f(*[5,,7])

33

<p>So we use **kwds, which works fine:</p>

sage: a = {’na.rm’:True}

sage: print R[’sum’](v, **a)

[1] 6

sage: def f(a, b, c):

... return a + 2*b + 3*c

...

sage: args = (5,)

sage: kwds = {’b’:7, ’c’:13}

sage: f(*args, **kwds)

58

sage: def g(*scott, **alex):

... print scott, alex

... return f(*scott, **alex)

sage: g(1,2,c=3)

(1, 2) {’c’: 3}

14

sage: f( *(3, 8), **{’c’:2})

25

sage: f( 2, *(5,), **{’c’:1})
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15

<h2>Plotting using Rpy2:</h2>

<ol>

<li>Call the R.png function to tell R where the output image should be saved (and what size it should be).</li>

<li>Draw plots on the canvas until done.</li>

<li>Tell R to turn the plotting device off, which causes the output file to be written. &nbsp;</li>

</ol>

<p>IMPORTANT: This must all happen in the same notebook cell. &nbsp;Otherwise the output file gets written in temp directory for a cell that was already evaluated, and the plot may not appear.</p>

sage: x = robjects.IntVector(range(50))

sage: y = R.rnorm(len(x)) # normal random numbers

sage: # 300r = "raw Python int" (no preparser)

sage: R.png(’sage.png’, width=600r, height=300r)

sage: R.plot(x, y, xlab="x", ylab="rnorm", col="red")

sage: _ = R[’dev.off’]() # "_ =" to suppress printing

<p>Interact works, of course.</p>

sage: @interact

sage: def _(points=(10..1000)):

... x = robjects.IntVector(range(points)); y = R.rnorm(int(points))

... R.png(’sage.png’, width=600r, height=300r)

... R.plot(x, y, xlab="x", ylab="rnorm", col="blue")

... R[’dev.off’]()

<p><strong>Warning again -- Do NOT do this:</strong> call dev.off in a separate cell!</p>

sage: # intentionally broken!

sage: x = robjects.IntVector(range(50))

sage: y = R.rnorm(len(x)) # normal random numbers

sage: R.png(’sage.png’, width=600r, height=300r)

sage: R.plot(x, y, xlab="runif", ylab="foo/bar", col="red")

<RObject - Python:0x434b488 / R:0x42a6758>

sage: R[’dev.off’]()

<RVector - Python:0x434b128 / R:0x551b408>

<h2>A More Nontrivial Example</h2>

<p>&nbsp;</p>

<p>This is how we would do this directly in R, which we can use from Sage by using the "%r" mode in the notebook (or r.eval("""...""")):</p>

sage: %r

sage: ctl <- c(4.17,5.58,5.18,6.11,4.50,4.61,5.17,4.53,5.33,5.14)

sage: trt <- c(4.81,4.17,4.41,3.59,5.87,3.83,6.03,4.89,4.32,4.69)

sage: group <- gl(2, 10, 20, labels = c("Ctl","Trt"))

sage: weight <- c(ctl, trt)

sage: anova(lm.D9 <- lm(weight ~ group))

sage: summary(lm.D90 <- lm(weight ~ group - 1))# omitting intercept

Analysis of Variance Table

Response: weight

Df Sum Sq Mean Sq F value Pr(>F)

group 1 0.6882 0.68820 1.4191 0.249

Residuals 18 8.7293 0.48496

Call:

lm(formula = weight ~ group - 1)
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Residuals:

Min 1Q Median 3Q Max

-1.0710 -0.4938 0.0685 0.2462 1.3690

Coefficients:

Estimate Std. Error t value Pr(>|t|)

groupCtl 5.0320 0.2202 22.85 9.55e-15 ***

groupTrt 4.6610 0.2202 21.16 3.62e-14 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 0.6964 on 18 degrees of freedom

Multiple R-squared: 0.9818,Adjusted R-squared: 0.9798

F-statistic: 485.1 on 2 and 18 DF, p-value: < 2.2e-16

<p>Next, we do the same computation, but via rpy2 (which is unfortunately more complicated):</p>

sage: ctl = robjects.FloatVector([4.17,5.58,5.18,6.11,4.50,4.61,5.17,4.53,5.33,5.14])

sage: trt = robjects.FloatVector([4.81,4.17,4.41,3.59,5.87,3.83,6.03,4.89,4.32,4.69])

sage: group = R.gl(2r, 10r, 20r, labels = ["Ctl","Trt"])

sage: weight = ctl + trt

sage: robjects.globalEnv["weight"] = weight

sage: robjects.globalEnv["group"] = group

sage: lm_D9 = R.lm("weight ~ group")

sage: print(R.anova(lm_D9))

Analysis of Variance Table

Response: weight

Df Sum Sq Mean Sq F value Pr(>F)

group 1 0.6882 0.68820 1.4191 0.249

Residuals 18 8.7293 0.48496

sage: lm_D90 = R.lm("weight ~ group - 1")

sage: v = R.summary(lm_D90)

sage: print(v)

Call:

function (formula, data, subset, weights, na.action, method = "qr",

model = TRUE, x = FALSE, y = FALSE, qr = TRUE, singular.ok = TRUE,

contrasts = NULL, offset, ...)

{

ret.x <- x

ret.y <- y

cl <- match.call()

mf <- match.call(expand.dots = FALSE)

m <- match(c("formula", "data", "subset", "weights", "na.action",

"offset"), names(mf), 0L)

mf <- mf[c(1L, m)]

mf$drop.unused.levels <- TRUE

mf[[1L]] <- as.name("model.frame")

mf <- eval(mf, parent.frame())

if (method == "model.frame")

return(mf)
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else if (method != "qr")

warning(gettextf("method = ’%s’ is not supported. Using ’qr’",

method), domain = NA)

mt <- attr(mf, "terms")

y <- model.response(mf, "numeric")

w <- as.vector(model.weights(mf))

if (!is.null(w) && !is.numeric(w))

stop("’weights’ must be a numeric vector")

offset <- as.vector(model.offset(mf))

if (!is.null(offset)) {

if (length(offset) != NROW(y))

stop(gettextf("number of offsets is %d, should equal %d (number of observations)",

length(offset), NROW(y)), domain = NA)

}

if (is.empty.model(mt)) {

x <- NULL

z <- list(coefficients = if (is.matrix(y)) matrix(, 0,

3) else numeric(0L), residuals = y, fitted.values = 0 *

y, weights = w, rank = 0L, df.residual = if (is.matrix(y)) nrow(y) else length(y))

if (!is.null(offset)) {

z$fitted.values <- offset

z$residuals <- y - offset

}

}

else {

x <- model.matrix(mt, mf, contrasts)

z <- if (is.null(w))

lm.fit(x, y, offset = offset, singular.ok = singular.ok,

...)

else lm.wfit(x, y, w, offset = offset, singular.ok = singular.ok,

...)

}

class(z) <- c(if (is.matrix(y)) "mlm", "lm")

z$na.action <- attr(mf, "na.action")

z$offset <- offset

z$contrasts <- attr(x, "contrasts")

z$xlevels <- .getXlevels(mt, mf)

z$call <- cl

z$terms <- mt

if (model)

z$model <- mf

if (ret.x)

z$x <- x

if (ret.y)

z$y <- y

if (!qr)

z$qr <- NULL

z

}(formula = "weight ~ group - 1")
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Residuals:

Min 1Q Median 3Q Max

-1.0710 -0.4938 0.0685 0.2462 1.3690

Coefficients:

Estimate Std. Error t value Pr(>|t|)

groupCtl 5.0320 0.2202 22.85 9.55e-15 ***

groupTrt 4.6610 0.2202 21.16 3.62e-14 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 0.6964 on 18 degrees of freedom

Multiple R-squared: 0.9818,Adjusted R-squared: 0.9798

F-statistic: 485.1 on 2 and 18 DF, p-value: < 2.2e-16

sage: print(lm_D9.names)

[1] "coefficients" "residuals" "effects" "rank"

[5] "fitted.values" "assign" "qr" "df.residual"

[9] "contrasts" "xlevels" "call" "terms"

[13] "model"

sage: print(lm_D9.r[’coefficients’])

$coefficients

(Intercept) groupTrt

5.032 -0.371

<p>You could also use rpy2 as follows to do this computation:</p>

sage: R("""

sage: ctl <- c(4.17,5.58,5.18,6.11,4.50,4.61,5.17,4.53,5.33,5.14)

sage: trt <- c(4.81,4.17,4.41,3.59,5.87,3.83,6.03,4.89,4.32,4.69)

sage: group <- gl(2, 10, 20, labels = c("Ctl","Trt"))

sage: weight <- c(ctl, trt)

sage: print(anova(lm.D9 <- lm(weight ~ group)))

sage: print(summary(lm.D90 <- lm(weight ~ group - 1)))

sage: """)

Analysis of Variance Table

Response: weight

Df Sum Sq Mean Sq F value Pr(>F)

group 1 0.6882 0.68820 1.4191 0.249

Residuals 18 8.7293 0.48496

Call:

lm(formula = weight ~ group - 1)

Residuals:

Min 1Q Median 3Q Max

-1.0710 -0.4938 0.0685 0.2462 1.3690

Coefficients:

Estimate Std. Error t value Pr(>|t|)

groupCtl 5.0320 0.2202 22.85 9.55e-15 ***

groupTrt 4.6610 0.2202 21.16 3.62e-14 ***
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---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 0.6964 on 18 degrees of freedom

Multiple R-squared: 0.9818,Adjusted R-squared: 0.9798

F-statistic: 485.1 on 2 and 18 DF, p-value: < 2.2e-16

<h2>Data Frames</h2>

<p>In R a "data frame" is an array of values with labeled rows and columns (like part of a spreadsheet). &nbsp;Typically one thinks of a data frame as a table where the rows are observations and the columns are variables.</p>

<p>You can create a data frame using the data.frame R function:</p>

sage: d = {’value’: robjects.IntVector((24,25,26)),

... ’letter’: robjects.StrVector((’x’, ’y’, ’z’))}

...

sage: dataf = R[’data.frame’](**d)

sage: print(dataf)

letter value

1 x 24

2 y 25

3 z 26

sage: type(dataf)

<class ’rpy2.robjects.RDataFrame’>

<p>Get each column:</p>

sage: print dataf.r[’letter’]

letter

1 x

2 y

3 z

sage: print dataf.r[’value’]

value

1 24

2 25

3 26

<p>Labels for the rows:</p>

sage: print dataf.rownames()

[1] "1" "2" "3"

<p>Labels for the columns:</p>

sage: print dataf.colnames()

[1] "letter" "value"

<h2>Converting Between Numpy and RPy2</h2>

<p>If you are using rpy2 and Sage together to deal with large real-world data sets, then it is critical that you can quickly move data back and forth. &nbsp; If you’re working with big data in Sage, you’re probably using numpy arrays. &nbsp;Fortunately, there is a way to very quickly convert a big numpy array to an R vector and conversely, as we illustrate below.</p>

<p>NOTE: The rpy2 documentation suggests doing "import rpy2.robjects.numpy2ri" but this is broken (at least with the versions of R, rpy2, and numpy in Sage), and gives totally wrong results. &nbsp;So just explicitly use FloatVector, etc., as illustrated below.</p>

sage: import numpy

sage: a = numpy.array([[1,2],[3,4]], dtype=float)

sage: v = numpy.arange(5)

sage: print R(v)

Traceback (most recent call last):

...

ValueError: Nothing can be done for the type <type ’numpy.ndarray’> at the moment.

sage: print(robjects.FloatVector(v))

[1] 0 1 2 3 4

sage: import rpy2.robjects.numpy2ri
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sage: print R(numpy.array([[1,2],[3,4]], dtype=float))

[1] 4

<p>... CRAP, this seems to be just totally broken in rpy2. &nbsp;Maybe it is fixed in a newer version. &nbsp;Sorry folks.</p>
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Chapter 10

Abstract Algebra

10.1 Groups, Rings and Fields

<p>The first page of "abstract mathematics" that I ever saw, accidentally misfiled in a the computer book section of Bookman’s in Flagstaff. (Burton W. Jones’s "An Introduction to Modern Algebra", 1975.)</p>

<p><img src="data/burton.png" alt="" /></p>

<h2>Groups</h2>

<p>A group is a set $G$ equipped with a binary operation $G \times G \to G$ that we write as a dot below that has three properties:</p>

<ol>

<li><strong>Associativity</strong>: &nbsp;$(a\cdot b)\cdot c = a\cdot(b\cdot c)$</li>

<li><strong>Existence of identity</strong>: There is $1\in G$ such that $1\cdot a = a\cdot 1 = a$ for all $a \in G$.</li>

<li><strong>Existence of inverse</strong>: For each $a\in G$ there is $a^{-1} \in G$ such that $a^{-1} \cdot a = a\cdot a^{-1} = 1$.</li>

</ol>

<h3>Examples</h3>

<p>We construct objects in Sage that have a binary operation satisfying the above properties.</p>

<h3>The Integers</h3>

sage: G = Integers() # the operation is +

sage: G

Integer Ring

sage: G(2) + G(5)

7

<h3>The Integers Modulo 12 (Clock Arithmetic)</h3>

sage: G = Integers(12); G # operation is "+"

Ring of integers modulo 12

sage: list(G)

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]

<p>If it is 7am, what time will it be 10 hours from now? &nbsp;Answer: 5pm.</p>

sage: G(3) + G(10)

1

sage: G.addition_table()

+ a b c d e f g h i j k l

+------------------------

a| a b c d e f g h i j k l

b| b c d e f g h i j k l a

c| c d e f g h i j k l a b

d| d e f g h i j k l a b c
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e| e f g h i j k l a b c d

f| f g h i j k l a b c d e

g| g h i j k l a b c d e f

h| h i j k l a b c d e f g

i| i j k l a b c d e f g h

j| j k l a b c d e f g h i

k| k l a b c d e f g h i j

l| l a b c d e f g h i j k

<h3>Elliptic Curves</h3>

sage: E = EllipticCurve([0, 1, 1, -2, 0]); E

Elliptic Curve defined by y^2 + y = x^3 + x^2 - 2*x over Rational Field

sage: E(QQ)

Abelian group of points on Elliptic Curve defined by y^2 + y = x^3 + x^2 - 2*x over Rational Field

sage: P, Q = E.gens(); P, Q

((-1 : 1 : 1), (0 : 0 : 1))

sage: P + Q + P + P + P + Q

(1809/1936 : -20033/85184 : 1)

sage: E = EllipticCurve(GF(7), [0, 1, 1, -2, 0]); E

Elliptic Curve defined by y^2 + y = x^3 + x^2 + 5*x over Finite Field of size 7

sage: E(GF(7))

Abelian group of points on Elliptic Curve defined by y^2 + y = x^3 + x^2 + 5*x over Finite Field of size 7

sage: E.cardinality()

13

sage: plot(E, pointsize=40).show(figsize=[2.5,2.5], gridlines=True)

<html><font color=’black’><img src=’cell://sage0.png’></font></html>

<h3>The Group of all Permutations of $\{1,2,3,\ldots, n-1, n\}$:</h3>

sage: G = SymmetricGroup(3); G

Symmetric group of order 3! as a permutation group

sage: list(G)

[(), (2,3), (1,2), (1,2,3), (1,3,2), (1,3)]

sage: for g in G:

... print g

()

(2,3)

(1,2)

(1,2,3)

(1,3,2)

(1,3)

sage: g(3)

1

sage: G = SymmetricGroup(12)

sage: G.cardinality()

479001600

sage: s = G([(1,5,3),(2,4)]); s

(1,5,3)(2,4)

sage: s(5)

3

sage: s.order()

6

sage: G.multiplication_table()
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* a b c d e f

+------------

a| a b c d e f

b| b a d c f e

c| c e a f b d

d| d f b e a c

e| e c f a d b

f| f d e b c a

sage: show(G.cayley_graph())

<html><font color=’black’><img src=’cell://sage0.png’></font></html>

<h3>The Group of orientation preserving symmetries of the icosahedron...</h3>

sage: icosahedron().show(viewer=’canvas3d’)

sage: G = AlternatingGroup(5); G

Alternating group of order 5!/2 as a permutation group

sage: G.order()

60

<p>Advanced Functionality...</p>

sage: show(G.character_table())

<html><div class="math">\newcommand{\Bold}[1]{\mathbf{#1}}\left(\begin{array}{rrrrr}

1 & 1 & 1 & 1 & 1 \\

3 & -1 & 0 & \zeta_{5}^{3} + \zeta_{5}^{2} + 1 & -\zeta_{5}^{3} - \zeta_{5}^{2} \\

3 & -1 & 0 & -\zeta_{5}^{3} - \zeta_{5}^{2} & \zeta_{5}^{3} + \zeta_{5}^{2} + 1 \\

4 & 0 & 1 & -1 & -1 \\

5 & 1 & -1 & 0 & 0

\end{array}\right)</div></html>

sage: G.derived_series()

[Permutation Group with generators [(3,4,5), (1,2,3,4,5)]]

sage: G.is_solvable()

False

sage: G.upper_central_series()

[Permutation Group with generators [()]]

sage: var(’x,a,b’)

sage: show(solve(x^3+a*x+b==0,x)[0])

<html><div class="math">\newcommand{\Bold}[1]{\mathbf{#1}}x = \frac{{\left(-i \, \sqrt{3} + 1\right)} a}{6 \, {\left(\frac{1}{18} \, \sqrt{4 \, a^{3} + 27 \, b^{2}} \sqrt{3} - \frac{1}{2} \, b\right)}^{\left(\frac{1}{3}\right)}} - \frac{1}{2} \, {\left(i \, \sqrt{3} + 1\right)} {\left(\frac{1}{18} \, \sqrt{4 \, a^{3} + 27 \, b^{2}} \sqrt{3} - \frac{1}{2} \, b\right)}^{\left(\frac{1}{3}\right)}</div></html>

sage: C = G.cayley_graph()

sage: G.cayley_graph().plot3d(engine=’tachyon’).show()

<h3>The General and Special Linear Groups (Invertible Matrices)</h3>

sage: G = GL(2, GF(5)); G # 2x2 invertible matrices with entries modulo 5

General Linear Group of degree 2 over Finite Field of size 5

sage: G.gens()

[

[2 0]

[0 1],

[4 1]

[4 0]

]

sage: G.cardinality()

480

sage: G = SL(2, GF(5)) # determinant 1

sage: G.order()
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sage: G.subgroup([G.gens()[0]])

Traceback (most recent call last):

...

AttributeError: ’SpecialLinearGroup_finite_field_with_category’ object has no attribute ’subgroup’

sage: GG = gap(G)

sage: GG

SL(2,5)

sage: GG.Order()

120

<h3>Rubik’s Cube Group</h3>

<p>See the <a href="http://www.sagemath.org/doc/reference/sage/groups/perm_gps/cubegroup.html" target="_blank">Sage docs</a>&nbsp;and <a href="http://en.wikipedia.org/wiki/Rubik’s_cube_group" target="_blank">Wikipedia</a>. &nbsp;See also <a href="http://trac.sagemath.org/sage_trac/ticket/11360" target="_blank">my complaint.</a></p>

sage: RubiksCube().plot3d().show(viewer=’tachyon’, figsize=2, zoom=.9)

sage: G = CubeGroup(); G

The PermutationGroup of all legal moves of the Rubik’s cube.

sage: G.gens()

[’(33,35,40,38)(34,37,39,36)( 3, 9,46,32)( 2,12,47,29)( 1,14,48,27)’, ’(41,43,48,46)(42,45,47,44)(14,22,30,38)(15,23,31,39)(16,24,32,40)’, ’(17,19,24,22)(18,21,23,20)( 6,25,43,16)( 7,28,42,13)( 8,30,41,11)’, ’( 9,11,16,14)(10,13,15,12)( 1,17,41,40)( 4,20,44,37)( 6,22,46,35)’, ’(25,27,32,30)(26,29,31,28)( 3,38,43,19)( 5,36,45,21)( 8,33,48,24)’, ’( 1, 3, 8, 6)( 2, 5, 7, 4)( 9,33,25,17)(10,34,26,18)(11,35,27,19)’]

sage: GG = PermutationGroup(G.gens())

sage: c = GG.cardinality(); c

43252003274489856000

sage: factor(c)

2^27 * 3^14 * 5^3 * 7^2 * 11

<h1>Rings and Fields</h1>

<p>An <strong>abelian group</strong> is a group $G$ where for every $a,b \in G$ we have $a\cdot b = b\cdot a$.</p>

<p>An<strong> monoid</strong> is the same as a group, except we do not require the existence of inverses.</p>

<p>A <strong>ring</strong> $R$ is a set with two binary operations, $+$ and $\cdot$ such that:</p>

<ol>

<li>$(R,+)$ is an abelian group,</li>

<li>$(R^*,\cdot)$ is an abelian monoid, where $R^*$ is the set of nonzero elements of $R$,</li>

<li>For all $a,b,c \in R$ we have $a\cdot (b+c) = a\cdot b + a\cdot c$.</li>

</ol>

<p>A <strong>field</strong> $K$ is a ring such that $(R^*, \cdot)$ is a group.</p>

<h2>Examples</h2>

<p>Like with groups, Sage (and mathematics!) comes loaded with numerous rings and fields.</p>

sage: ZZ

Integer Ring

sage: RR

Real Field with 53 bits of precision

sage: CC

Complex Field with 53 bits of precision

sage: RealField(200)

Real Field with 200 bits of precision

sage: AA

Algebraic Real Field

sage: Integers(12)

Ring of integers modulo 12

sage: GF(17)

Finite Field of size 17

sage: GF(9,’a’)

Finite Field in a of size 3^2
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sage: ZZ[’x’]

Univariate Polynomial Ring in x over Integer Ring

sage: QQ[’x,y,z’]

Multivariate Polynomial Ring in x, y, z over Rational Field

sage: ZZ[sqrt(-5)]

Order in Number Field in a with defining polynomial x^2 + 5

sage: QQ[[’q’]]

Power Series Ring in q over Rational Field

<p>Just as for groups, there is much advanced functionality available for rings (e.g., Groebner basis), but this is another story...</p>

10.2 Exact Linear Algebra

Linear algebra is the study of matrices, vectors, solving linear systems of equations,
vector spaces, and linear transformation. It is a topic that is loaded with interesting
algorithms, and Sage is good at it. In this section, we will focus on exact linear algebra,
in which all matrices and vectors that we consider have exact entries (e.g., rational
numbers, numbers modulo p, polynomials over the rationals, etc.), as opposed to nu-
merical linear algebra with floating point entries; thus, for this section, roundoff error
and general numerical analysis are not directly relevant.

10.2.1 Documentation for Linear Algebra in Sage

• Quick Reference Card: There is a linear algebra quick reference card available
at http://wiki.sagemath.org/quickref.

• Sage reference manual: The following chapters are particularly relevant:

– Matrices: http://sagemath.org/doc/reference/matrices.html

– Modules: http://sagemath.org/doc/reference/modules.html

• Robert Beezer’s book: This is a free open source Undergraduate Linear Algebra
Book, which is available here: http://linear.ups.edu/

10.2.2 Underlying Technology

The implementation of exact linear algebra in Sage is a combination of a large amount
of code written in Cython from scratch with some C/C++ libraries. The Linbox
C++ library http://www.linalg.org/ is used for some matrix multiplication and
characteristic and minimal polynomial computations, especially for very big matrices
with entries in the rational numbers or a finite field. The IML library (see http:

//www.cs.uwaterloo.ca/~astorjoh/iml.html) is used behind the scenes for solving
systems of linear equations over the rational numbers. The M4RI library is used for
linear algebra over the field with two elements. Numpy is used in a few places, but only
for numerical linear algebra. Most everything relies at some on the ATLAS basic linear
algebra system (BLAS) at some level (see http://math-atlas.sourceforge.net/).
Yes, even multiplying two matrices over the rational numbers is eventually done by
multiplying matrices with floating point entries (via a block decomposition and reduc-
tion modulo primes)!
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10.2.3 Matrices and Vectors

First we illustrate arithmetic with matrices

sage: A = matrix(QQ, 3, 4, [1..12]); B = matrix(QQ, 4,2, [1..8])

sage: A * B

[ 50 60]

[114 140]

[178 220]

The following arithmetic produces errors, as it should, since mathematically it makes
no sense:

sage: A + B

Traceback (most recent call last):

...

TypeError: unsupported operand parent(s) for ’+’: ’Full MatrixSpace

of 3 by 4 dense matrices over Rational Field ’ and ’Full MatrixSpace

of 4 by 2 dense matrices over Rational Field ’

sage: B * A

Traceback (most recent call last):

...

TypeError: unsupported operand parent(s) for ’*’: ’Full MatrixSpace

of 4 by 2 dense matrices over Rational Field ’ and ’Full MatrixSpace

of 3 by 4 dense matrices over Rational Field ’

Sage does let you add a scalar to a square matrix, which adds that scalar to each
entry along the diagonal:

sage: A = matrix(QQ, 3, [1..9])

sage: A + 2/3

[ 5/3 2 3]

[ 4 17/3 6]

[ 7 8 29/3]

Next we consider the problem of solving linear systems. We can encode a linear
system of equations as a matrix equation Ax = v, where the problem is to solve for
the unknown x given A and v. In Sage, v can be either a vector or a matrix (and x
will correspondingly be a vector or matrix). If there are infinitely many solutions for x,
Sage returns exactly one.

sage: set_random_seed (1)

sage: A = random_matrix(QQ, 5, num_bound =100, den_bound =100); A

[ 59/78 13/14 -11/49 -47/75 -52/15]

[ 27/56 -40/51 10/53 -89/12 -3/16]

[ 82/61 -55/7 -74/45 -11/46 5/52]

[ -43/32 79/37 -57/29 -48/29 43/15]

[ 67/47 12/23 -25/24 13/16 46/63]

sage: A.det()

-33309120911318572378640943486889/31089394772345027072747520000

sage: v = random_matrix(QQ, 5, 1, num_bound =100); v

[-76]

[ 98]

[-82]
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[ 27]

[ 51]

sage: x = A.solve_right(v); x

[1423743250326764132356431158406816/33309120911318572378640943486889]

[ 403480176009266931788705978326932/33309120911318572378640943486889]

[1021661231928866958567656117461050/33309120911318572378640943486889]

[ -393424222265393565078003995300100/33309120911318572378640943486889]

[1153927117568938940697661220942640/33309120911318572378640943486889]

sage: A*x == v

True

You can also use the Matlab-style backslash notation for “solve right”:

sage: A \ v

[1423743250326764132356431158406816/33309120911318572378640943486889]

[ 403480176009266931788705978326932/33309120911318572378640943486889]

[1021661231928866958567656117461050/33309120911318572378640943486889]

[ -393424222265393565078003995300100/33309120911318572378640943486889]

[1153927117568938940697661220942640/33309120911318572378640943486889]

We can also use the solve_left method to solve xA = v:

sage: v = random_matrix(QQ, 1, 5, num_bound =10^10); v

sage: x = A.solve_left(v)

sage: x*A == v

True

You can also solve linear sytems symbolically by using the solve command, as
illustrated below. This is fine for relatively small systems (especially when you do not
want to have to think about which field the coefficients lie in), but is dramatically less
powerful for large systems.

sage: var(’x1, x2, x3’)

sage: e = [2*x1 + 3*x2 + 5*x3 == 1, -x1 + x2 + 15*x3 == 5, x1 + x2 + x3 == 1]

sage: S = solve(e, [x1, x2, x3]); S

[[x1 == (18/5) , x2 == (-17/5), x3 == (4/5)]]

Here is how to “get at” the solution:

sage: S[0][0]

x1 == (18/5)

sage: S[0][0]. lhs(), S[0][0]. rhs()

(x1 , 18/5)

Using matrices and exact linear algebra in Sage, we can solve the same system as
follows:

sage: A = matrix(QQ, 3, [2,3,5, -1,1,15, 1,1,1])

sage: v = matrix(QQ, 3, 1, [1, 5, 1])

sage: x = A \ v; x

[ 18/5]

[ -17/5]

[ 4/5]
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sage: A*x == v

True

Solving over the rational numbers using Sage matrices is quite powerful. For exam-
ple:

sage: set_random_seed (1)

sage: A = random_matrix(QQ, 100, num_bound =10^10 , den_bound =100)

sage: v = random_matrix(QQ, 100, 1, num_bound =10^10 , den_bound =100)

sage: A[0] # just the first row

( -9594630370/11 , -2724596772/25 , 1863701863/28 , ... 164457253/5)

sage: x = A.solve_right(v)

sage: A*x == v

True

sage: len(x.str ())

789999

On my 64-bit OS X dual core i7 2.7GHZ laptop, the timing to solve Ax = v for
exactly the above matrix in various software is as follows:

• Sage-4.6.2 (which uses the IML library): 0.45 seconds

• Magma 2.17-4: 1.39 seconds

• Mathematica 7.0: 10.5 seconds

• Maple 14: 18.2 seconds

The characteristic polynomial of a square matrix A is f(x) = det(A− x); it has the
property that f(A) = 0.

sage: A = matrix(QQ, 5, [1..25]); A

[ 1 2 3 4 5]

[ 6 7 8 9 10]

[11 12 13 14 15]

[16 17 18 19 20]

[21 22 23 24 25]

sage: f = A.characteristic_polynomial (); f

x^5 - 65*x^4 - 250*x^3

sage: f.factor ()

x^3 * (x^2 - 65*x - 250)

sage: f(A)

[0 0 0 0 0]

[0 0 0 0 0]

[0 0 0 0 0]

[0 0 0 0 0]

[0 0 0 0 0]

sage: R.<x> = QQ[]

sage: (x - A).det()

x^5 - 65*x^4 - 250*x^3

Internally, Sage using some very clever algorithm (from the Linbox C++ library) to
compute the characteristic polynomial, so Sage is fairly fast at this operation.

sage: set_random_seed (0)
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sage: A = random_matrix(QQ, 200)

sage: f = A.charpoly () # a second or so

On my laptop, Magma and Sage both take 0.7 seconds to compute this characteristic
polynomial. Mathematica takes 338 seconds (nearly 6 minutes).

sage: len(str(f)) # about 5-10 typed pages?

35823

Sage can also compute the kernel (the nullspace) and the image (column space) of
a matrix.

sage: A = matrix(QQ, 3, 4, [1..12]); A

[ 1 2 3 4]

[ 5 6 7 8]

[ 9 10 11 12]

The right kernel V of A is the vector space of all vectors x such that Ax = 0. (The
left kernel is the space of those vectors with xA = 0.)

sage: V = A.right_kernel (); V

Vector space of degree 4 and dimension 2 over Rational Field

Basis matrix:

[ 1 0 -3 2]

[ 0 1 -2 1]

sage: V.basis () # vectors always get written as row vectors

[

(1, 0, -3, 2),

(0, 1, -2, 1)

]

sage: for v in V.basis (): print A * v

(0, 0, 0)

(0, 0, 0)

If you know linear algebra, you’ll know that the echelon form of a matrix is used to
compute the kernel.

sage: A.echelon_form ()

[ 1 0 -1 -2]

[ 0 1 2 3]

[ 0 0 0 0]

The column space (or image) of A (viewed as acting from the right) is the vector
space of linear combinations of the colums of A:

sage: V = A.column_space (); V

Vector space of degree 3 and dimension 2 over Rational Field

Basis matrix:

[ 1 0 -1]

[ 0 1 2]

sage: V.basis ()

[

(1, 0, -1),
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(0, 1, 2)

]

10.2.4 Vector Spaces

When we computed the kernel of (the linear transformation defined by) a matrix above,
the result is a vector space, which is a certain set of vectors. There is a class in Sage
that represents such objects. For example, the vector space Q3 is the set of all 3-tuples
of rational numbers:

sage: V = QQ^3; V

Vector space of dimension 3 over Rational Field

Let’s construct two of the coordinate planes as subspaces of V .

sage: Wxy = V.span([ (1,0,0), (0,1,0) ]); Wxy

Vector space of degree 3 and dimension 2 over Rational Field

Basis matrix:

[1 0 0]

[0 1 0]

sage: Wyz = V.span([ (0,1,0), (0,0,1) ]); Wyz

Vector space of degree 3 and dimension 2 over Rational Field

Basis matrix:

[0 1 0]

[0 0 1]

We can compute in Sage the intersection of these two subspaces, which is geometri-
cally the y axis:

sage: Wxy.intersection(Wyz)

Vector space of degree 3 and dimension 1 over Rational Field

Basis matrix:

[0 1 0]

We can also compute the sum, which is the set of all sums v + w, where v ∈ Wxy and
w ∈Wyz.

sage: Wxy + Wyz

Vector space of degree 3 and dimension 3 over Rational Field

Basis matrix:

[1 0 0]

[0 1 0]

[0 0 1]

If we want to consider a subspace W spanned by a particular list of vectors with
that basis, use the span_of_basis method.

sage: W = V.span_of_basis ([ (1,2,3), (4,5,6) ]); W

Vector space of degree 3 and dimension 2 over Rational Field

User basis matrix:

[1 2 3]

[4 5 6]
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sage: W.basis ()

[

(1, 2, 3),

(4, 5, 6)

]

Given a vector we can ask if it is in W or not, and if so, ask for its coordinates in
terms of our basis for W .

sage: x = V([1 ,8 ,5])

sage: x in W

False

sage: x = V([7 ,8 ,9])

sage: x in W

True

sage: W.coordinates(x)

[-1, 2]

sage: # sometimes getting a vector back is more useful

sage: W.coordinate_vector(x)

(-1, 2)

We can also define linear transformations (lienar maps) between vector spaces by spec-
ifying where each basis vector goes.

sage: phi = Hom(W, V)([3*V.1 - V.2, V.2 - 3*V.1]); phi

Free module morphism defined by the matrix

[ 0 3 -1]

[ 0 -3 1]

Domain: Vector space of degree 3 and dimension 2 over Rational Field

User ...

Codomain: Vector space of dimension 3 over Rational Field

Let’s apply this linear transformation ϕ to some vectors:

sage: W.0

(1, 2, 3)

sage: phi(W.0)

(0, 3, -1)

sage: phi(W.1)

(0, -3, 1)

sage: phi(W.0 + W.1)

(0, 0, 0)

sage: phi.kernel ()

Vector space of degree 3 and dimension 1 over Rational Field

Basis matrix:

[ 1 7/5 9/5]

sage: phi.image ()

Vector space of degree 3 and dimension 1 over Rational Field

Basis matrix:

[ 0 1 -1/3]
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Chapter 11

Databases

In this chapter, we will explain how to store and manipulate data that arises when using
Sage.

Good news! You’re using Sage, hence Python, and there is a huge range of excellent
database technology available. Many object oriented, relational, and noSQL databases
have excellent Python interfaces and support, and the Python language supports object
serialization. With Sage you have far more powerful and scalable tools available for
storing data to disk, indexing it, and manipulating it, than with any other mathematics
software platform out there.

The main topics we will discuss in this chapter are pickling Python objects, using
the filesystem to write and read files, and using SQLite (which is included with Sage)
to create a database.

11.1 Saving and Loading Python Objects

11.1.1 save and load

The save and load commands are the most important thing you will learn in this
section. Everything else in this section just enhances your depth of understanding.

First we make a complicated object Sage object, consisting of a list with entries a
pair of a rational and int, then a matrix, and finally a symbolic expression.

sage: A = [(2/3, int(5)), matrix(QQ, 1, 4, [1,2,-5/3,8]), sin(x^2)]

You can save this one object to a file on disk:

sage: save(A, ’/tmp/A.sobj’)

You can then load it back from disk:

sage: load(’/tmp/A.sobj’)

[(2/3, 5), [ 1 2 -5/3 8], sin(x^2)]

Finally, we should cleanup our “mess”:

sage: os.unlink(’/tmp/A.sobj’)
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In the notebook, you can also just save A to the current cell, then click to download
it to your computer, and possibly load it into another copy of Sage elsewhere.

sage: save(A, ’A.sobj’)

The rest of this section will give you a bit more depth of understanding about how
this works.

11.1.2 pickle: Python object serialization

The save and load commands from Section 11.1.1 above are implemented using Python’s
pickling mechanism. Pickling refers to turning almost any object X into a single string
s. You can then save s somewhere, and (hopefully) load it later. This process is known
as object serialization (see http://en.wikipedia.org/wiki/Serialization), and is
also very important for parallel distributed computation.

To illustrate pickling, first we create the Python int 2011, and turn it into a string
using the dumps function that is defined in the builtin Python pickle module.1

sage: import pickle

sage: s = pickle.dumps(int (2011))

sage: s

’I2011\n.’

sage: type(s)

<type ’str’>

sage: print s

I2011

.

The loads function turns our pickled string s back into an object:

sage: n = pickle.loads(s); n

2011

sage: type(n)

<type ’int’>

The explain_pickle command, which was written for Sage by Carl Witty, at-
tempts to produce Sage code that, when evaluated in Sage, produces the same result
as unpickling the pickle.

sage: explain_pickle(s)

2011r

Next, let’s pickle a more complicated data structure:

sage: s = pickle.dumps ([20r, long (11)]); s

’(lp0\nI20\naL11L\na.’

sage: print s

(lp0

I20

aL11L

1There is also a cPickle module in Python that is a faster version of pickle, and is supposed to be
a drop in replacement.
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sage: explain_pickle(s)

[20r, long (11)]

sage: pickle.loads(s)

[20, 11L]

Pickling also deals sensibly with references, e.g., in the following notice that the integer
n is only pickled once, not 5 times:

sage: n = 93574

sage: v = [n,n,n,n,n]; s = pickle.dumps(v); s

"(lp0\ncsage.rings.integer\nmake_integer\np1\n(S’2rc6 ’\np2\ntp3\nRp4\nag4\nag4\nag4\nag4\na."

sage: explain_pickle(s)

pg_make_integer = unpickle_global(’sage.rings.integer ’, ’make_integer ’)

si = pg_make_integer(’2rc6’)

[si , si , si , si , si]

You might notice in the above he pickle of a Sage integer is even more complicated,
since the pickle stores the callable that can be used to recreate the integer, along with
binary data that efficiently represents the integer (not in base 10!). The representation
is not in a base 10, since base conversion is potentially slow, and all numbers are stored
internally in base 2.

sage: s = pickle.dumps (2011); s

"csage.rings.integer\nmake_integer\np0\n(S’1ur ’\np1\ntp2\nRp3\n."

sage: print s

csage.rings.integer

make_integer

p0

(S’1ur’

p1

tp2

Rp3

.

sage: explain_pickle(s)

pg_make_integer = unpickle_global(’sage.rings.integer ’, ’make_integer ’)

pg_make_integer(’1ur’)

How fast is pickling and unpickling a big Sage integer?

sage: n = ZZ.random_element (10^1000) # a 1000 digit Sage Integer

sage: timeit(’s = pickle.dumps(n)’)

sage: s = pickle.dumps(n)

sage: timeit(’k = pickle.loads(s)’)

625 loops , best of 3: 45.9 s per loop

625 loops , best of 3: 34.4 s per loop

It takes much longer (ten times longer!) to pickle a Python int. Part of this might
be base 2 to base 10 conversion overhead?

sage: n = int(n) # same 1000 digit Python int

sage: timeit(’s = pickle.dumps(n)’)

sage: s = pickle.dumps(n)
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sage: timeit(’k = pickle.loads(s)’)

625 loops , best of 3: 476 s per loop

625 loops , best of 3: 72.9 s per loop

References to Other Math Software

Not every object can be serialized in Sage. For example, as we discussed in Chapter 6,
some Sage objects are wrappers around objects defined in another mathematical soft-
ware package, e.g., Maxima, Singular, GAP, Magma, Mathematica, etc. In some case,
such objects are difficult or impossible serialize. However, in most cases math software
does provide some form of serialization of objects, and in some cases Sage automatically
makes use of it. For example,

sage: import pickle; s = pickle.dumps(a); s

"csage.interfaces.expect\nreduce_load\np0\n(csage.interfaces.gp\nreduce_load_GP\np1\n(tRp2\nS ’[1, 2/3, 1.5000000000000000000000000000000000000] ’\ np3\ntp4\nRp5\n."

sage: pickle.loads(s)

[1, 2/3, 1.5000000000000000000000000000000000000]

In GP/PARI, object data structures are all fairly straightforward, so the print rep-
resentation of most objects can simply be evaluated to get them back using the eval

command.
In Magma, object data structures are very complicated and there is no way to

serialize most of them (as far as the author knows). There also was no eval command
in Magma until fairly recently, but fortunately there is one now. (On very simple input,
the eval in Magma is roughly 10 times slower to call than the eval command in PARI
and Python, so watch out.)

You can also pickle objects of classes you define...

class Foo:

def __init__(self , x):

self.x = x

def __repr__(self):

return ’Foo x=%s’%self.x

sage: f = Foo(’2010’)

sage: s = pickle.dumps(f); s

"(i__main__\nFoo\np0\n(dp1\nS’x’\np2\nS ’2010’\np3\nsb."

sage: C = pickle.loads(s); type(C)

<type ’instance ’>

sage: C

Foo x=2010

BIG FAT WARNING: The code of the Python modules (code or compiled .so’s)
that define the objects is NOT stored in the pickled form of the object. (This is pretty
obvious with the integer example above!) If the relevant Python modules don’t exist in
the right place, then the pickle will simply be broken.

This means that if somebody decides to rename or move some code in Sage, it can
easily render pickles useless. So be careful. We do have something called ”the pickle
jar”, which helps ensure that in Sage itself this doesn’t cause too much trouble. This
large “pickle jar” contains hundreds of objects, and testing that they unpickle is part
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of Sage’s test suite.
Example: All of the state of the Sage notebook used to be stored as pickles of

Python classes that are part of the source code of the notebook. I wanted to move the
code of the Sage notebook out of the Sage library, and make the notebook a separate
project. This was nearly impossible because of how I had designed those pickles. Tim
Dumol and I spent over a week writing and testing code to load notebook pickles, them
convert the data structures to very simple data structures (e.g., dictionaries, strings)
that didn’t use any special classes, then resave them. The resulting new saved pickles
can be read by any Python independently of Sage or the notebook. This makes it
possible to move the notebook code out of the Sage library. However, it is still there
(just waiting to confuse you!), in case somebody tries to load an old Sage Notebook
instance using a new version of Sage, since we want to migrate the old notebook pickles
to the new format. (This code and capability will be removed soon, since it was over a
year ago that the notebook was removed from the Sage library.)

Customization: You can fully customize how any class gets pickled, including
Cython classes (where you pretty much have to customize them). This can make pickling
more robust and potentially faster. Also, careful thought about customizing how objects
get pickled can make them more robust in case you change your mind later (the matrix
code in Sage is particularly good this way). The example below illustrates how two
seemingly similar classes can have massively difference pickling performance, depending
on whether somebody cared to write some fast pickling code.

Moral: For longterm use of data, using pickles is very dangerous and should be
avoided if possible. For shortterm use (over the course of a few minutes, weeks or
months), using pickles is incredibly useful. Think of pickles like a jar of pickles that
you buy from the store (and open). They have to be refrigerators and they have an
expiration date. But they last a while.

sage: A = random_matrix(Integers (10^100) , 200)

sage: time s = pickle.dumps(A)

Time: CPU 6.26 s, Wall: 6.26 s

Here B is exactly the same matrix as A, except the entries are viewed as being in Z
instead of Z/10100Z. Yet it pickles 60 times more quickly (somebody should fix this!).

sage: B = A.change_ring(ZZ)

sage: time t = pickle.dumps(B)

Time: CPU 0.11 s, Wall: 0.11 s

sage: 6.26/.11

56.9090909090909

Pickles in Sage

Sage has some convenience functions for working with pickles:

load, save, loads, dumps

There is also save and dumps method on any classes that derives from SageObject.
The main thing that the load/save/loads/dumps functions in Sage do, over the pickle

methods, is they transparently by default do in memory zlib compression. Also, save
and load combine pickling with actually writing the pickle string out to a file. Also,
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load can load many other types of objects, for example load a pickle off of a webpage.
We illustrate all this below.

sage: A = matrix(ZZ, 4, 20, [1..80]); A

[ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20]

[21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40]

[41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60]

[61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80]

sage: len(pickle.dumps(A))

489

sage: # the sage dumps method compresses by default -- here we get a factor of 2 savings

sage: len(dumps(A))

282

Of course, the compressed version is unreadable to the eye since it is zlib compressed:

sage: print dumps(A)

xmN ...

<p>Compared to:</p>

sage: print pickle.dumps(A)

csage.matrix.matrix0

unpickle

p0

(csage.matrix.matrix_integer_dense

Matrix_integer_dense

p1

csage.matrix.matrix_space

MatrixSpace

p2

(csage.rings.integer_ring

IntegerRing

p3

(tRp4

I4

I20

I00

tp5

Rp6

csage.structure.mutability

Mutability

p7

(I00

tp8

Rp9

(dp10

S’1 2 3 4 5 6 7 8 9 a b c d e f g h i j k l m n o p q r s t u v 10 11 12 13 14 15 16 17 18 19 1a 1b 1c 1d 1e 1f 1g 1h 1i 1j 1k 1l 1m 1n 1o 1p 1q 1r 1s 1t 1u 1v 20 21 22 23 24 25 26 27 28 29 2a 2b 2c 2d 2e 2f 2g’

p11

I0

tp12

Rp13

.

<p>loads can parse both the compressed and uncompressed pickles (it figures out which is right by assuming compressed, getting an error, then trying uncompressed).</p>
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sage: loads(dumps(A))

[ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20]

[21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40]

[41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60]

[61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80]

sage: loads(pickle.dumps(A))

[ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20]

[21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40]

[41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60]

[61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80]

<p>Compression has a performance penalty:</p>

sage: timeit(’loads(dumps(A))’)

625 loops, best of 3: 192 s per loop

sage: timeit(’loads(dumps(A,compress=False), compress=False)’)

625 loops, best of 3: 130 s per loop

<p>We can save a pickle to a file and load it from a file:</p>

sage: save(A, ’A.sobj’)

sage: save(A, ’/tmp/A.sobj’)

34

sage: load(’/tmp/A.sobj’)

[ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20]

[21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40]

[41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60]

[61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80]

sage: os.unlink(’/tmp/A.sobj’) # clean up

<p>We can load a pickle from a webpage too, which is pretty cool:</p>

sage: X = load(’http://wiki.wstein.org/11/480a/5-25?action=AttachFile&do=get&target=A.sobj’)

sage: X

Attempting to load remote file: http://wiki.wstein.org/11/480a/5-25?action=AttachFile&do=get&target=A.sobj

Loading: [.]

[ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20]

[21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40]

[41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60]

[61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80]

sage: X = load(’http://wiki.wstein.org/11/480a/5-25?action=AttachFile&do=get&target=A.sobj’, verbose=False); X

[ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20]

[21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40]

[41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60]

[61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80]

<p><strong>Conclusion: </strong></p>

<ul>

<li>Understanding object serialization is useful if you do some research computations, and want to record the results in a way that you can later easily recover. As long as later isn’t "too late". </li>

<li>It requires very little thought to use. <strong>save(obj, ’filename.sobj’) </strong>and <strong>load(’filename.sobj’)</strong></li>

<li>You could make a simple "database" that anybody can easily use over the web by: (1) putting a bunch of sobj’s on a webpage, and (2) writing a Python function that uses Sage’s load command to remotely grab them off that webpage when requested. Very simple. </li>

</ul>

<h2>Opening Files</h2>

<p>If you want to store a plain string to disk, and load it later, it is critical to master the Python <strong>open</strong> command. This is very similar to the C library open command, hence to the open command in most programming languages. You can use this one builtin Python command to both read and write files, and also to iterate through the lines of a file, seek to given positions, etc. </p>

sage: file = open(’/tmp/file’, ’w’); file

<open file ’/tmp/file’, mode ’w’ at 0x456f470>

sage: file.write("This is a line.")
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sage: file.close()

sage: open(’/tmp/file’).read()

’This is a line.’

sage: file = open(’/tmp/file’); file

<open file ’/tmp/file’, mode ’r’ at 0x4b85ad0>

sage: file.seek(3)

sage: file.read(4)

’s is’

sage: file.seek(0)

sage: file.read()

’This is a line.’

sage: file.close()

sage: os.unlink(’/tmp/file’)

<p>One can do a lot with a file, or a bunch of files in a directory. Don’t use a sophisticated database just because you don’t understand or know how to use files. Now you do. In some cases, they are a great solution. </p>

<p> </p>

<h2>Pickling + Files: @disk_cached_function</h2>

<p>Here’s a nice decorator (written by Tom Boothby) that combines files with pickling. </p>

sage: disk_cached_function?

<html><!--notruncate-->

<div class="docstring">

<p><strong>File:</strong> /sagenb/flask/sage-4.6.2/local/lib/python2.6/site-packages/sage/misc/cachefunc.py</p>

<p><strong>Type:</strong> &lt;type &#8216;classobj&#8217;&gt;</p>

<p><strong>Definition:</strong> disk_cached_function(f)</p>

<p><strong>Docstring:</strong></p>

<blockquote>

<p>Decorator for <tt class="xref py py-class docutils literal"><span class="pre">DiskCachedFunction</span></tt>.</p>

<p>EXAMPLES:</p>

<div class="highlight-python"><div class="highlight"><pre class="literal-block"><span class="gp">sage: </span><span class="nb">dir</span> <span class="o">=</span> <span class="n">tmp_dir</span><span class="p">()</span>

<span class="gp">sage: </span><span class="nd">@disk_cached_function</span><span class="p">(</span><span class="nb">dir</span><span class="p">)</span>

<span class="gp">... </span><span class="k">def</span> <span class="nf">foo</span><span class="p">(</span><span class="n">x</span><span class="p">):</span> <span class="k">return</span> <span class="n">next_prime</span><span class="p">(</span><span class="mi">2</span><span class="o">^</span><span class="n">x</span><span class="p">)</span><span class="o">%</span><span class="n">x</span>

<span class="gp">sage: </span><span class="n">x</span> <span class="o">=</span> <span class="n">foo</span><span class="p">(</span><span class="mi">200</span><span class="p">);</span><span class="n">x</span>

<span class="go">11</span>

<span class="gp">sage: </span><span class="nd">@disk_cached_function</span><span class="p">(</span><span class="nb">dir</span><span class="p">)</span>

<span class="gp">... </span><span class="k">def</span> <span class="nf">foo</span><span class="p">(</span><span class="n">x</span><span class="p">):</span> <span class="k">return</span> <span class="mi">1</span><span class="o">/</span><span class="n">x</span>

<span class="gp">sage: </span><span class="n">foo</span><span class="p">(</span><span class="mi">200</span><span class="p">)</span>

<span class="go">11</span>

<span class="gp">sage: </span><span class="n">foo</span><span class="o">.</span><span class="n">clear_cache</span><span class="p">()</span>

<span class="gp">sage: </span><span class="n">foo</span><span class="p">(</span><span class="mi">200</span><span class="p">)</span>

<span class="go">1/200</span>

</pre></div>

</div>

</blockquote>

</div>

</html>

sage: if os.path.exists(’/tmp/factor_cache’):

... import shutil
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... shutil.rmtree(’/tmp/factor_cache’)

...

...

sage: @disk_cached_function(’/tmp/factor_cache’)

sage: def my_factor(n):

... return factor(n)

sage: time my_factor(2^157+1)

3 * 15073 * 2350291 * 17751783757817897 * 96833299198971305921

Time: CPU 0.08 s, Wall: 0.08 s

sage: time my_factor(2^157+1)

3 * 15073 * 2350291 * 17751783757817897 * 96833299198971305921

Time: CPU 0.00 s, Wall: 0.00 s

sage: os.listdir(’/tmp/factor_cache’)

[’my_factor-182687704666362864775460604089535377456991567873.sobj’, ’my_factor-182687704666362864775460604089535377456991567873.key.sobj’]

sage: time my_factor(2^157+3)

5^3 * 557 * 2623880856967509727475197186205175977838299

Time: CPU 0.02 s, Wall: 0.02 s

sage: os.listdir(’/tmp/factor_cache’)

[’my_factor-182687704666362864775460604089535377456991567875.sobj’, ’my_factor-182687704666362864775460604089535377456991567875.key.sobj’, ’my_factor-182687704666362864775460604089535377456991567873.sobj’, ’my_factor-182687704666362864775460604089535377456991567873.key.sobj’]

sage: load(’/tmp/factor_cache/%s’%os.listdir(’/tmp/factor_cache’)[0])

(((182687704666362864775460604089535377456991567875,), ()), 5^3 * 557 * 2623880856967509727475197186205175977838299)

sage: load(’/tmp/factor_cache/%s’%os.listdir(’/tmp/factor_cache’)[1])

((182687704666362864775460604089535377456991567875,), ())

<p>Clean our mess:</p>

sage: import shutil

sage: shutil.rmtree(’/tmp/factor_cache’)

<p><strong>Summary</strong>:</p>

<ul>

<li><strong>save/load:</strong> If you remember nothing else from today’s lecture, remember these two commands, which allow you to very easily store and load most any object.</li>

<li><strong>open</strong>: It is easy to open and write to and read from files in Python.</li>

<li><strong>disk_cached_function:</strong> provides a function decorator that makes a function only ever have to evaluate a given input once, and in the future it just remembers the inputs automatically. It combines pickling with using open to read and write data to the filesystem. You can manage the cached inputs to the function outside of Sage, just by adding files to the cache directory (e.g., if you computed values of a disk_cached_function on different computers, you could just dump all the directories of files that result into a single big directory and have the combined cache).</li>

</ul>

<h2>Next:</h2>

<ul>

<li><a href="http://www.sqlite.org/" target="_blank">SQLite</a>: a <em>relational database </em>that is included in Sage. This is not at all Python specific, but it has excellent support for using it from Python. It’s an extremely popular database -- according to their website it is <em>the most widely deployed database</em> there is. For example, iPhone apps all use it track their data...</li>

<li>(Maybe) <a href="http://www.sqlalchemy.org/" target="_blank">SQLalchemy</a>: an <em>object relational mapper </em>that is included in Sage. SQLalchemy provides much more Python-friendly support on top of some relational database, but built on SQLite or MySQL or PostgreSQL.</li>

</ul>

11.2 SQLite and SQLAlchemy

<p><strong>Using SQLite in Sage</strong></p>

<p>Check out <a href="http://www.sqlite.org/" target="_blank">the SQLite website.</a>&nbsp; &nbsp;Some key points:</p>

<ul>

<li>SQLite is surely the most widely deployed database in the world, in some sense.</li>

<li>SQLite is vastly simpler to use and administer than pretty much all other databases.</li>

<li>SQLite is extremely fast (if used correctly).&nbsp;</li>

<li>SQLite is <strong>public domain. &nbsp;</strong>You can do absolutely anything you want with the source code.</li>

<li>Every copy of Sage comes with SQLite.</li>

<li>Learning about SQLite may server you well in non-Sage related projects, since it can be used on its own.</li>

</ul>
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<p>&nbsp;</p>

<p>Here’s a complete example of using SQLite to make a database of integer factorizations.</p>

sage: # sqlite3 is a standard Python module

sage: import sqlite3

sage: # Make sure the database file isn’t left over from a previous demo...

sage: file = ’/tmp/sqlite0’

sage: if os.path.exists(file):

... os.unlink(file)

sage: # open the database file -- zero configuration!

sage: db = sqlite3.connect(file)

sage: # get a "cursor"

sage: cursor = db.cursor()

sage: # start executing SQL commands

sage: cursor.execute("""CREATE TABLE factorizations

... (number INTEGER, factorization TEXT, UNIQUE(number))""")

...

sage: cursor.execute("CREATE INDEX factorizations_idx ON factorizations(number)")

sage: # commit our changes -- SQL uses transactions

sage: db.commit()

sage: t = (’6’, ’[(2,1),(3,1)]’)

sage: cursor.execute(’INSERT INTO factorizations VALUES(?,?)’, t)

<sqlite3.Cursor object at 0x4846298>

sage: db.commit()

<p>We can look at our new database on the command line, completely independently of Sage/Python:</p>

<pre><span style="background-color: #ffff99;">boxen:~ wstein\$ sage -sh

(sage subshell)\$ sqlite3 /tmp/sqlite1

SQLite version 3.4.2

Enter ".help" for instructions

Enter SQL statements terminated with a ";"

sqlite&gt; .schema

CREATE TABLE factorizations

(number TEXT, factorization TEXT, UNIQUE(number));

CREATE INDEX factorizations_idx ON factorizations(number);

sqlite&gt; select * from factorizations;

6|[(2,1),(3,1)]</span>

</pre>

<p>By the way, the UNIQUE above makes it so you can’t enter another factorization of the same number.</p>

sage: t = (’6’, ’[(2,1),(3,1)]’)

sage: cursor.execute(’INSERT INTO factorizations VALUES(?,?)’, t)

Traceback (most recent call last):

...

sqlite3.IntegrityError: column number is not unique

sage: %time

sage: for n in range(1,10000):

... f = str(list(factor(n))).replace(’ ’,’’)

... try:

... t = (str(n), f)

... z = cursor.execute(’INSERT INTO factorizations VALUES(?,?)’, t)

... except:

... print "Unable to insert factorization of %s"%n
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Unable to insert factorization of 6

CPU time: 0.63 s, Wall time: 0.63 s

sage: time db.commit()

Time: CPU 0.01 s, Wall: 0.00 s

sage: a = cursor.execute(’SELECT * FROM factorizations ORDER BY number;’)

sage: i = 0

sage: for x in a:

... print x

... i += 1

... if i>10: break

(1, u’[]’)

(2, u’[(2,1)]’)

(3, u’[(3,1)]’)

(4, u’[(2,2)]’)

(5, u’[(5,1)]’)

(6, u’[(2,1),(3,1)]’)

(7, u’[(7,1)]’)

(8, u’[(2,3)]’)

(9, u’[(3,2)]’)

(10, u’[(2,1),(5,1)]’)

(11, u’[(11,1)]’)

<p>We use the command line again (we <strong><em>do not</em></strong> have to exit or reload!) and find:</p>

<pre>sqlite&gt; SELECT * FROM factorizations where number&lt;10;

1|[]

2|[(2,1)]

3|[(3,1)]

4|[(2,2)]

5|[(5,1)]

6|[(2,1),(3,1)]

7|[(7,1)]

8|[(2,3)]

9|[(3,2)]</pre>

<p>Obviously, to use SQLite effectively, it helps enormously to know the SQL language. &nbsp; Fortunately, you don’t need to know very much, there are tons of examples on the web, many tutorials, books, and SQL isn’t hard to learn. &nbsp;</p>

<p>&nbsp;</p>

<p>Python documentation for the sqlite3 module: <a href="http://docs.python.org/library/sqlite3.html" target="_blank">http://docs.python.org/library/sqlite3.html</a></p>

<h2 style="text-align: center; ">SQLAlchemy</h2>

<p>Next we’ll spend a few moments on <a href="http://www.sqlalchemy.org/" target="_blank">SQLAlchemy</a>, which is a Python package included standard with Sage, which can also be installed easily into any Python install.&nbsp;</p>

<ul>

<li>SQLAlchemy is the <strong><em>canonical</em></strong> "object relational database mapper" for Python.</li>

<li>SQLAlchemy abstracts away the database backend, so the same code/application can work with SQLite, PostgreSQL, Oracle, MySQL, etc.</li>

<li>SQLAlchemy has a large test suite, good documentation, and is a high quality polished product.&nbsp;</li>

<li>SQLAlchemy is MIT licensed (so very open source)</li>

</ul>

<p>&nbsp;</p>

<p><strong>WARNING:</strong> As of this writing (May 27, 2011) the version of SQLAlchemy in the newest Sage (which is Sage-4.7) is the "ancient" 0.5.8 version. &nbsp;So make sure to look at the right version of the SQLAlchemy docs here: <a href="http://www.sqlalchemy.org/docs/05/" target="_blank">http://www.sqlalchemy.org/docs/05/</a></p>

sage: import sqlalchemy

sage: sqlalchemy.__version__

’0.5.8’

<p>We will use the file /tmp/sqlite1 for our demo. &nbsp;Make sure it is deleted.</p>

sage: file = ’/tmp/sqlite1’
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sage: if os.path.exists(file):

... os.unlink(file)

<p>Create a SQLite engine, which SQLalchemy will use. &nbsp;This is the only place below that SQLite is explicitly mentioned.</p>

sage: from sqlalchemy import create_engine

sage: engine = create_engine(’sqlite:///%s’%file) #, echo=True)

<p>Use SQLalchemy to declare a new Python class, which will get mapped to a table in the above SQLlite database.</p>

sage: from sqlalchemy.ext.declarative import declarative_base

sage: from sqlalchemy import Column

sage: Base = declarative_base()

sage: class IntFac(Base):

...

... __tablename__ = ’factorizations’

... number = Column(sqlalchemy.Integer, primary_key=True)

... factorization = Column(sqlalchemy.String)

...

... def __init__(self, number):

... self.number = int(number)

... self.factorization = str(list(factor(number))).replace(’ ’,’’)

...

... def __repr__(self):

... return ’%s: %s’%(self.number, self.factorization)

<p>Make a particular session that connects to the database.</p>

sage: from sqlalchemy.orm import sessionmaker

sage: session = sessionmaker(bind=engine)()

<p>Create the tables. &nbsp;In this case, there is exactly one, which corresponds to the IntFac class above.</p>

sage: Base.metadata.create_all(engine)

<p>Now create an integer factorization object.</p>

sage: f = IntFac(6); f

6: [(2,1),(3,1)]

<p>And add it to our session, so it will get tracked by the database.</p>

sage: session.add(f)

<p>Commit everything we have done so far. &nbsp;After this commit, the database exists separately on a disk on file, and we can inspect it using the sqlite3 command line program.</p>

sage: session.commit()

<pre>wstein@boxen:/tmp\$ ls -lh /tmp/sqlite1

-rw-r--r-- 1 sagenbflask sagenbflask 2.0K 2011-05-27 13:46 /tmp/sqlite1

wstein@boxen:/tmp\$ sqlite3 /tmp/sqlite1

SQLite version 3.4.2

Enter ".help" for instructions

sqlite&gt; .schema

CREATE TABLE factorizations (

number INTEGER NOT NULL,

factorization VARCHAR,

PRIMARY KEY (number)

);

sqlite&gt; select * from factorizations;

6|[(2,1),(3,1)]

</pre>

<p>We try a query on the session:</p>

sage: session.query(IntFac).first()

6: [(2,1),(3,1)]
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<p>We try adding the factorization of 6 again. &nbsp;This should give an error because number is the primary key, hence must be unique.</p>

sage: session.add(IntFac(6))

sage: session.commit()

Traceback (most recent call last):

...

sqlalchemy.orm.exc.FlushError: New instance <IntFac at 0x596d790> with identity key (<class ’__main__.IntFac’>, (6,)) conflicts with persistent instance <IntFac at 0x579d190>

<p>Once an error occurs the only option is to rollback the whole transaction.</p>

sage: session.rollback()

<p>Let’s make a few thousand factorization (like we did above) and include them all in one transaction in the database.</p>

sage: time v = [IntFac(n) for n in [1..5] + [7..10000]]

Time: CPU 1.98 s, Wall: 1.98 s

<p>Using add_all should be more efficient than calling add many times.&nbsp;</p>

sage: time session.add_all(v)

Time: CPU 0.35 s, Wall: 0.36 s

sage: time session.commit()

Time: CPU 6.59 s, Wall: 6.59 s

<p>Now we have factorizations of all integers up to 10000. &nbsp;We can do a query like above.</p>

sage: for X in session.query(IntFac).filter(’number<10’):

... print X

1: []

2: [(2,1)]

3: [(3,1)]

4: [(2,2)]

5: [(5,1)]

6: [(2,1),(3,1)]

7: [(7,1)]

8: [(2,3)]

9: [(3,2)]

<p>And, we can do the same on the command line:</p>

<pre>sqlite&gt; select * from factorizations where number&lt;10;

1|[]

2|[(2,1)]

3|[(3,1)]

4|[(2,2)]

5|[(5,1)]

6|[(2,1),(3,1)]

7|[(7,1)]

8|[(2,3)]

9|[(3,2)]

</pre>

[[TODO: Add something about storing BLOBS = pickled objects in a database, e.g.,
my key:value store demo from 580d.]]
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