[Ash80]Ash, Avner. 1980. Cohomology of congruence subgroups $SL(n,,Z)$. Math. Ann. 249, 55–73.
[McC91]McConnell, M. 1991. Classical projective geometry and arithmetic groups. Math. Ann. 290, 441–462.
[Sch95]Schoof, R. 1995. Counting points on elliptic curves over finite fields. J. Theor. Nombres Bordeaux 7, 219–254.
[Aga00]Agashe, A. 2000. The Birch and Swinnerton-Dyer formula for modular abelian varieties of analytic rank~$0$. Ph.D. thesis, University of California, Berkeley , .
[AGG84]Ash, Avner, Daniel Grayson, and Philip Green. 1984. Computations of cuspidal cohomology of congruence subgroups of $rm SL(3,bf Z)$. J. Number Theory 19, 412–436.
[Ahl78]Ahlfors, Lars V. (1978) Complex analysis. New York: McGraw-Hill Book Co..
[AO01]Ahlgren, Scott, and Ken Ono. 2001. Addition and counting: the arithmetic of partitions. Notices Amer. Math. Soc. 48, 978–984.
[Kan00]Kaneko, Masanobu. 2000. The Akiyama-Tanigawa algorithm for Bernoulli numbers. J. Integer Seq. 3, Article 00.2.9, 6 pp. (electronic).
[Art79]Arthur, James. (1979) “Eisenstein series and the trace formula”. In (Eds.) Automorphic forms, representations and $L$-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977), Part 1, Providence, R.I.: Amer. Math. Soc..
[AB90]Ash, A, and A Borel. (1990) “Generalized modular symbols”. In (Eds.) Cohomology of arithmetic groups and automorphic forms (Luminy-Marseille, 1989), Berlin: Springer.
[AGR93]Ash, Avner, David Ginzburg, and Steven Rallis. 1993. Vanishing periods of cusp forms over modular symbols. Math. Ann. 296, 709–723.
[AG00]Ash, Avner, and Robert Gross. 2000. Generalized non-abelian reciprocity laws: a context for Wiles’ proof. Bull. London Math. Soc. 32, 385–397.
[Ash86]Ash, Avner. 1986. A note on minimal modular symbols. Proc. Amer. Math. Soc. 96, 394–396.
[AR79]Ash, Avner, and Lee Rudolph. 1979. The modular symbol and continued fractions in higher dimensions. Invent. Math. 55, 241–250.
[Ash94]Ash, Avner. 1994. Unstable cohomology of $rm SL(n,mathcalO)$. J. Algebra 167, 330–342.
[Ash84]Ash, Avner. 1984. Small-dimensional classifying spaces for arithmetic subgroups of general linear groups. Duke Math. J. 51, 459–468.
[Ash77]Ash, Avner. 1977. Deformation retracts with lowest possible dimension of arithmetic quotients of self-adjoint homogeneous cones. Math. Ann. 225, 69–76.
[AL70]Atkin, A. 1970. Hecke operators on protect$Gamma sb0(m)$. Math. Ann. 185, 134–160.
[AD04]Atti, Nadia Ben, and Gema M Diaz-Toca. 2004. . tt publis/ABMAvar.html , .
[BI97]Baeza, R, and M I Icaza. 1997. On Humbert-Minkowski’s constant for a number field. Proc. Amer. Math. Soc. 125, 3195–3202.
[Bar57]Barnes, E S. 1957. The perfect and extreme senary forms. Canad. J. Math. 9, 235–242.
[Bar94]Barvinok, A. 1994. A polynomial time algorithm for counting integral points in polyhedra when the dimension is fixed. Math. Oper. Res. 19, 769–779.
[Bas96]Basmaji, Jacques. (1996) Ein Algorithmus zur Berechnung von Hecke-Operatoren und Anwendungen auf modulare Kurven, tt : .
[Kel06]Kellner, Bernd C. 2006. Bernoulli Numbers. tt , .
[Bir71]Birch, B. (1971) “Elliptic curves over protect$mathbfQ$: A progress report”. In (Eds.) 1969 Number Theory Institute (Proc. Sympos. Pure Math., Vol. XX, State Univ. New York, Stony Brook, N.Y., 1969), Providence, R.I.: Amer. Math. Soc..
[BK90]Bloch, S, and K Kato. (1990) “protect$L$-functions and protectTamagawa numbers of motives”. In (Eds.) The Grothendieck Festschrift, Vol. protectI, Boston, MA: Birkh”auser Boston.
[BS73]Borel, A, and J Serre. 1973. Corners and arithmetic groups. Comment. Math. Helv. 48, 436–491.
[BW00]Borel, A, and N Wallach. (2000) Continuous cohomology, discrete subgroups, and representations of reductive groups. Providence, RI: American Mathematical Society.
[BT82]Bott, Raoul, and Loring W Tu. (1982) Differential forms in algebraic topology. New York: Springer-Verlag.
[BCDT01]Breuil, C, et al. 2001. On the modularity of elliptic curves over $bold Q$: wild 3-adic exercises. J. Amer. Math. Soc. 14, 843–939 (electronic).
[Bro94]Brown, Kenneth S. (1994) Cohomology of groups. New York: Springer-Verlag.
[BCS92]Buhler, J P, R E Crandall, and R W Sompolski. 1992. Irregular primes to one million. Math. Comp. 59, 717–722.
[Bul00]Bullock, S S. 2000. Well-rounded retracts of rank one symmetric spaces.
[BC06]Bullock, S S, and C Connell. 2006. Equivariant retracts of geometrically finite discrete groups acting on negatively pinched Hadamard manifolds.
[Bum97]Bump, Daniel. (1997) Automorphic forms and representations. Cambridge: Cambridge University Press.
[Bum84]Bump, Daniel. (1984) Automorphic forms on $rm GL(3,bf R)$. Berlin: Springer-Verlag.
[BS02]Buzzard, K, and W Stein. 2002. A mod five approach to modularity of icosahedral Galois representations. Pacific J. Math. 203, 265–282.
[Buz96]Buzzard, Kevin. 1996. On the eigenvalues of the Hecke operator $Tsb 2$. J. Number Theory 57, 130–132.
[Byg99]Bygott, J. 1999. Modular Forms and Modular Symbols over imaginary quadratic fields.
[Car59a]Carlitz, L. 1959. Arithmetic properties of generalized Bernoulli numbers. J. Reine Angew. Math. 202, 174–182.
[Car59b]Carlitz, L. 1959. Some arithmetic properties of generalized Bernoulli numbers. Bull. Amer. Math. Soc. 65, 68–69.
[GM03]Gunnells, P E, and M McConnell. 2003. Hecke operators and $Bbb Q$-groups associated to self-adjoint homogeneous cones. J. Number Theory 100, 46–71.
[CDT99]Conrad, Brian, Fred Diamond, and Richard Taylor. 1999. Modularity of certain potentially Barsotti-Tate Galois representations. J. Amer. Math. Soc. 12, 521–567.
[Che05]Chen, Imin. 2005. A Diophantine equation associated to $Xsb 0(5)$. LMS J. Comput. Math. 8, 116–121 (electronic).
[CO77]Cohen, H, and J Oesterle. 1977. Dimensions des espaces de formes modulaires. ** , 69–78. Lecture Notes in Math., Vol. 627.
[Coh93]Cohen, H. (1993) A course in computational algebraic number theory. Berlin: Springer-Verlag.
[AGM02]Ash, Avner, Paul E Gunnells, and Mark McConnell. 2002. Cohomology of congruence subgroups of $rm SLsb 4(Bbb Z)$. J. Number Theory 94, 181–212.
[AGM]Ash, Avner, Paul E Gunnells, and Mark McConnell. . Cohomology of congruence subgroups of $rm SLsb 4(Bbb Z)$ II.
[CF67]Cooke, George E, and Ross L Finney. (1967) Homology of cell complexes. Princeton, N.J.: Princeton University Press.
[Cou01]Coulangeon, Renaud. (2001) “Vorono”i theory over algebraic number fields”. In (Eds.) Reseaux euclidiens, designs spheriques et formes modulaires, Geneva: Enseignement Math..
[Cre84]Cremona, J. 1984. Hyperbolic tessellations, modular symbols, and elliptic curves over complex quadratic fields. Compositio Math. 51, 275–324.
[Cre]Cremona, J. . .
[Cre97c]Cremona, J. 1994. Periods of cusp forms and elliptic curves over imaginary quadratic fields. Math. Comp. 62, 407–429.
[CL04]Cremona, J, and M Lingham. 2004. Finding all elliptic curves with good reduction outside a given set of primes. in progress , .
[Cre97a]Cremona, J. (1997) Algorithms for modular elliptic curves. Cambridge: Cambridge University Press.
[Cre92]Cremona, J. 1992. Modular symbols for protect$Gammasb 1(N)$ and elliptic curves with everywhere good reduction. Math. Proc. Cambridge Philos. Soc. 111, 199–218.
[Cre06]Cremona, J. 2006. . Proceedings of the 7th International Symposium (ANTS-VII) , .
[Cre97b]Cremona, J. 1997. Computing periods of cusp forms and modular elliptic curves. Experiment. Math. 6, 97–107.
[CS88]Conway, J H, and N J A Sloane. 1988. Low-dimensional lattices. III. Perfect forms. Proc. Roy. Soc. London Ser. A 418, 43–80.
[CWZ01]Csirik, Janos A, Joseph L Wetherell, and Michael E Zieve. 2001. On the genera of $X_0(N)$. tt , .
[DP04]Darmon, H, and R Pollack. 2004. The efficient calculation of Stark-Heegner points via overconvergent modular symbols. ** , .
[Dar97]Darmon, H. 1997. Faltings plus epsilon, Wiles plus epsilon, and the generalized Fermat equation. C. R. Math. Rep. Acad. Sci. Canada 19, 3–14.
[Dem04]Dembele, L. 2004. Quaternionic Manin symbols, Brandt matrices and Hilbert modular forms.
[Dem05]Dembele, L. 2005. Explicit computations of Hilbert modular forms on $Bbb Q(sqrt5)$. Experiment. Math. 14, 457–466.
[Dia96]Diamond, F. 1996. On deformation rings and Hecke rings. Ann. of Math. (2) 144, 137–166.
[DI95]Diamond, F, and J Im. (1995) “Modular forms and modular curves”. In (Eds.) Seminar on Fermat’s Last Theorem, Providence, RI: .
[DS05]Diamond, Fred, and Jerry Shurman. (2005) A first course in modular forms. New York: Springer-Verlag.
[Dix82]Dixon, John D. 1982. Exact solution of linear equations using $p$-adic expansions. Numer. Math. 40, 137–141.
[Dok04]Dokchitser, Tim. 2004. Computing special values of motivic $L$-functions. Experiment. Math. 13, 137–149.
[DVS05]Dutour, M, F Vallentin, and A Sch”urmann. 2005. Classification of perfect forms in dimension $8$.
[Ebe02]Ebeling, Wolfgang. (2002) Lattices and codes. Braunschweig: Friedr. Vieweg & Sohn.
[ECdJ+06]Edixhoven, Bas, et al. 2006. On the computation of coefficients of modular form. tt , .
[EGM98]Elstrodt, J, F Grunewald, and J Mennicke. (1998) Groups acting on hyperbolic space. Berlin: Springer-Verlag.
[Eil47]Eilenberg, Samuel. 1947. Homology of spaces with operators. I. Trans. Amer. Math. Soc. 61, 378–417; errata, 62, 548 (1947).
[Elk98]Elkies, Noam D. (1998) “Elliptic and modular curves over finite fields and related computational issues”. In (Eds.) Computational perspectives on number theory (Chicago, IL, 1995), Providence, RI: Amer. Math. Soc..
[Gun00a]Gunnells, P E. 2000. Computing Hecke eigenvalues below the cohomological dimension. Experiment. Math. 9, 351–367.
[FvdG]Faber, C, and G van der Geer. . Sur la cohomologie des Systemes Locaux sur les Espaces des Modules des Courbes de Genus 2 and des Surfaces Abeliennes.
[FL]D,. . Maass forms and their $L$-functions.
[FJ02]Farmer, D. 2002. The irreducibility of some level 1 Hecke polynomials. Math. Comp. 71, 1263–1270 (electronic).
[vGvdKTV97]van Geemen, Bert, et al. 1997. Hecke eigenforms in the cohomology of congruence subgroups of $rm SL(3,mathbfZ)$. Experiment. Math. 6, 163–174.
[FT93]Fr”ohlich, A, and M J Taylor. (1993) Algebraic Number Theory. Cambridge: Cambridge University Press.
[Fra98]Franke, J. 1998. Harmonic analysis in weighted $Lsb 2$-spaces. Ann. Sci. Ecole Norm. Sup. (4) 31, 181–279.
[FM99]Frey, G, and M M”uller. (1999) “Arithmetic of modular curves and applications”. In (Eds.) Algorithmic algebra and number theory (Heidelberg, 1997), Berlin: Springer.
[FH91]Fulton, William, and Joe Harris. (1991) Representation theory. New York: Springer-Verlag.
[Wie05]Wiese, Gabor. 2005. Modular Forms of Weight One Over Finite Fields. Ph.D. thesis , .
[EVGS02]Elbaz-Vincent, Philippe, Herbert Gangl, and Christophe Soule. 2002. Quelques calculs de la cohomologie de $rm GLsb N(Bbb Z)$ et de la $K$-theorie de $Bbb Z$. C. R. Math. Acad. Sci. Paris 335, 321–324.
[Gel75]Gelbart, Stephen S. (1975) Automorphic forms on ad`ele groups. Princeton, N.J.: Princeton University Press.
[GS02]Giesbrecht, Mark, and Arne Storjohann. 2002. Computing rational forms of integer matrices. J. Symbolic Comput. 34, 157–172.
[Gol05]Goldfeld, Dorian. 2005. Automorphic forms and $L$-functions on the general linear group.
[Gol92]Goldfeld, D. 1992. On the computational complexity of modular symbols. Math. Comp. 58, 807–814.
[Gon97]Goncharov, A B. 1997. The double logarithm and Manin’s complex for modular curves. Math. Res. Lett. 4, 617–636.
[Gon98]Goncharov, A B. 1998. Multiple polylogarithms, cyclotomy and modular complexes. Math. Res. Lett. 5, 497–516.
[GLQ04]Gonzalez, Josep, Joan-Carles Lario, and Jordi Quer. (2004) “Arithmetic of $Bbb Q$-curves”. In (Eds.) Modular curves and abelian varieties, Basel: Birkh”auser.
[Gor93]Gordon, D. 1993. Discrete logarithms in $rm GF(p)$ using the number field sieve. SIAM J. Discrete Math. 6, 124–138.
[Gor04]Gordon, D. 2004. Discrete Logarithm Problem, hfill tt henkvt/Content.html. ** , .
[Gre81]Greenberg, M. (1981) Algebraic topology. Reading, Mass.: Benjamin/Cummings Publishing Co. Inc. Advanced Book Program.
[Gre83]Greenberg, Ralph. 1983. On the Birch and Swinnerton-Dyer conjecture. Invent. Math. 72, 241–265.
[Gri05]Grigorov, G. 2005. Kato’s Euler System and the Main Conjecture. Harvard Ph.D. Thesis , .
[Gro98]Gross, Benedict H. (1998) “On the Satake isomorphism”. In (Eds.) Galois representations in arithmetic algebraic geometry (Durham, 1996), Cambridge: Cambridge Univ. Press.
[GP05]Gross, Benedict H, and David Pollack. 2005. On the Euler characteristic of the discrete spectrum. J. Number Theory 110, 136–163.
[GS81]Grunewald, F, and J Schwermer. 1981. A nonvanishing theorem for the cuspidal cohomology of $SL_2$ over imaginary quadratic integers. Math. Ann. 258, 183–200.
[Hara]Harder, G. . Congruences between modular forms of genus 1 and of genus 2.
[Har87]Harder, G. 1987. Eisenstein cohomology of arithmetic groups. The case $rm GLsb 2$. Invent. Math. 89, 37–118.
[Har91]Harder, G. (1991) “Eisenstein cohomology of arithmetic groups and its applications to number theory”. In (Eds.) Proceedings of the International Congress of Mathematicians, Vol. I, II (Kyoto, 1990), Tokyo: Math. Soc. Japan.
[Har05]Harder, G. 2005. Modular symbols and special values of automorphic $L$-functions.
[Harb]Harder, G. . Kohomologie arithmetischer Gruppen.
[HC68]Harish-Chandra,. (1968) Automorphic forms on semisimple Lie groups. Berlin: Springer-Verlag.
[HT01]Harris, Michael, and Richard Taylor. (2001) The geometry and cohomology of some simple Shimura varieties. Princeton, NJ: Princeton University Press.
[Hel01]Helgason, Sigurdur. (2001) Differential geometry, Lie groups, and symmetric spaces. Providence, RI: American Mathematical Society.
[Hij74]Hijikata, H. 1974. Explicit formula of the traces of protectHecke operators for protect$Gamma_0(N)$. J. Math. Soc. Japan 26, 56–82.
[BHKS06]Belebas, K, et al. 2006. Factoring polynomials over global fields. preprint athfillmbox tt hoeij/papers.html , .
[Hsu96]Hsu, Tim. 1996. Identifying congruence subgroups of the modular group. Proc. Amer. Math. Soc. 124, 1351–1359.
[Hum80]Humphreys, James E. (1980) Arithmetic groups. Berlin: Springer.
[Ica97]Icaza, M I. 1997. Hermite constant and extreme forms for algebraic number fields. J. London Math. Soc. (2) 55, 11–22.
[Jaq91]Jaquet, David-Olivier. 1991. Classification des reseaux dans $bf Rsp 7$ (via la notion de formes parfaites). Asterisque , 7–8, 177–185 (1992).
[JC93]Jaquet-Chiffelle, David-Olivier. 1993. Enumeration compl`ete des classes de formes parfaites en dimension $7$. Ann. Inst. Fourier (Grenoble) 43, 21–55.
[Kna92]Knapp, A. (1992) Elliptic curves. Princeton, NJ: Princeton University Press.
[Knu]Knuth, Donald E. () The art of computer programming. Vol. 2. : Addison-Wesley Publishing Co., Reading, Mass..
[Kob84]Koblitz, N. (1984) Introduction to elliptic curves and modular forms. New York: Springer-Verlag.
[Kri90]Krieg, Aloys. 1990. Hecke algebras. Mem. Amer. Math. Soc. 87, x+158.
[LS76]Lee, Ronnie, and R H Szczarba. 1976. On the homology and cohomology of congruence subgroups. Invent. Math. 33, 15–53.
[Laf02]Lafforgue, Laurent. 2002. Chtoucas de Drinfeld et correspondance de Langlands. Invent. Math. 147, 1–241.
[Lan95]Lang, S. (1995) Introduction to modular forms. Berlin: Springer-Verlag.
[Lan76]Langlands, Robert P. (1976) On the functional equations satisfied by Eisenstein series. Berlin: Springer-Verlag.
[Lan66]Langlands, R P. (1966) “Eisenstein series”. In (Eds.) Algebraic Groups and Discontinuous Subgroups (Proc. Sympos. Pure Math., Boulder, Colo., 1965), Providence, R.I.: Amer. Math. Soc..
[LS02]Lario, Joan-C, and Rene Schoof. 2002. Some computations with Hecke rings and deformation rings. Experiment. Math. 11, 303–311.
[Lem01]Lemelin, Dominic. 2001. Mazur-Tate Type Conjectures for Elliptic Curves Defined over Quadratic Imaginary Fields. ** , .
[Leo58]Leopoldt, Heinrich-Wolfgang. 1958. Eine Verallgemeinerung der Bernoullischen Zahlen. Abh. Math. Sem. Univ. Hamburg 22, 131–140.
[LS04]Li, Jian-Shu, and Joachim Schwermer. 2004. On the Eisenstein cohomology of arithmetic groups. Duke Math. J. 123, 141–169.
[Lin05]Lingham, M. 2005. Modular forms and elliptic curves over imaginary quadratic fields.
[LLL82]Lenstra, A K, and Jr Lenstra. 1982. Factoring polynomials with rational coefficients. Math. Ann. 261, 515–534.
[Lub94]Lubotzky, A. (1994) Discrete groups, expanding graphs and invariant measures. Basel: Birkh”auser Verlag.
[BCP97]Bosma, W, J Cannon, and C Playoust. 1997. The Magma algebra system. I. The user language. J. Symbolic Comput. 24, 235–265.
[Man72]Manin, J. 1972. Parabolic points and zeta functions of modular curves. Izv. Akad. Nauk SSSR Ser. Mat. 36, 19–66.
[Mar05]Martin, Greg. 2005. Dimensions of the spaces of cusp forms and newforms on $Gammasb 0(N)$ and $Gammasb 1(N)$. J. Number Theory 112, 298–331.
[Mar01]Martin, Fran. 2001. Periodes de formes modulaires de poids 1. ** , .
[Mar03]Martinet, Jacques. (2003) Perfect lattices in Euclidean spaces. Berlin: Springer-Verlag.
[Maz73]Mazur, B. (1973) “Courbes elliptiques et symboles modulaires”. In (Eds.) Seminaire Bourbaki, 24`eme annee (1971/1972), Exp. No. 414, Berlin: Springer.
[Men79]Mendoza, Eduardo R. (1979) Cohomology of $rm PGLsb2$ over imaginary quadratic integers. Bonn: Universit”at Bonn Mathematisches Institut.
[Mer94]Merel, L. (1994) “Universal protectFourier expansions of modular forms”. In (Eds.) On Artin’s conjecture for odd 2-dimensional representations, : Springer.
[Mer99]Merel, L. 1999. Arithmetic of elliptic curves and Diophantine equations. J. Theor. Nombres Bordeaux 11, 173–200.
[Mes86]Mestre, J. 1986. La methode des graphes. protectExemples et applications. Proceedings of the international conference on class numbers and fundamental units of algebraic number fields (Katata) , 217–242.
[Miy89]Miyake, T. (1989) Modular forms. Berlin: Springer-Verlag.
[MM93]MacPherson, R, and M McConnell. 1993. Explicit reduction theory for Siegel modular threefolds. Invent. Math. 111, 575–625.
[MM89]MacPherson, R, and M McConnell. (1989) “Classical projective geometry and modular varieties”. In (Eds.) Algebraic analysis, geometry, and number theory (Baltimore, MD, 1988), Baltimore, MD: Johns Hopkins Univ. Press.
[Gun99]Gunnells, P E. 1999. Modular symbols for $Q$-rank one groups and Voronoui reduction. J. Number Theory 75, 198–219.
[MTT86]Mazur, B, J Tate, and J Teitelbaum. 1986. On $p$-adic analogues of the conjectures of Birch and Swinnerton-Dyer. Invent. Math. 84, 1–48.
[MW94]Moeglin, Colette, and Jean-Loup Waldspurger. (1994) Decomposition spectrale et series d’Eisenstein. Basel: Birkh”auser Verlag.
[Nec94]Nechaev, V I. 1994. On the complexity of a deterministic algorithm for a discrete logarithm. Mat. Zametki 55, 91–101, 189.
[Ong86]Ong, Heidrun E. 1986. Perfect quadratic forms over real-quadratic number fields. Geom. Dedicata 20, 51–77.
[PR84]Platonov, Vladimir, and Andrei Rapinchuk. (1994) Algebraic groups and number theory. Boston, MA: Academic Press Inc..
[Que06]Quer, J. 2006. Dimensions of spaces of modular forms for $Gamma_H(N)$. ** , .
[JBS03]Jorza, A, J Balakrishna, and W Stein. 2003. The Smallest Conductor for an Elliptic Curve of Rank Four is Composite,tt ** , .
[Rib01]Ribet, K. (2001) “Lectures on Serre’s conjectures”. In (Eds.) Arithmetic algebraic geometry (Park City, UT, 1999), Providence, RI: Amer. Math. Soc..
[Rib92]Ribet, K. (1992) “Abelian varieties over $bf Q$ and modular forms”. In (Eds.) Algebra and topology 1992 (Taeju on), Taeju on: Korea Adv. Inst. Sci. Tech..
[Ros86]Rosen, M. (1986) “Abelian varieties over protect$bf C$”. In (Eds.) Arithmetic geometry (Storrs, Conn., 1984), New York: Springer.
[Ste06]Stein, W. 2006. tt SAGE: Software for Algebra and Geometry Experimentation, tt ** , .
[Sap97]Saper, Leslie. 1997. Tilings and finite energy retractions of locally symmetric spaces. Comment. Math. Helv. 72, 167–202.
[Sar03]Sarnak, Peter. 2003. Spectra of hyperbolic surfaces. Bull. Amer. Math. Soc. (N.S.) 40, 441–478 (electronic).
[Sch90]Scholl, A. 1990. Motives for modular forms. Invent. Math. 100, 419–430.
[Sch86]Schwermer, Joachim. 1986. Holomorphy of Eisenstein series at special points and cohomology of arithmetic subgroups of $rm SLsb n(bf Q)$. J. Reine Angew. Math. 364, 193–220.
[Lab90]Labesse, J. 1990. Cohomology of arithmetic groups and automorphic forms.
[Ser73]Serre, J-P. (1973) A protectCourse in protectArithmetic. New York: Springer-Verlag.
[Ser87]Serre, J-P. 1987. Sur les representations modulaires de degre protect$2$ de protect$rmGal(overlinebf Q/bf Q)$. Duke Math. J. 54, 179–230.
[Shi94]Shimura, G. (1994) Introduction to the arithmetic theory of automorphic functions. Princeton, NJ: Princeton University Press.
[Shim59]Shimura, G. 1959. Sur les protectintegrales protectattachees aux formes automorphes. J. Math. Soc. Japan 11, 291–311.
[Sho80b]Shokurov, V. 1980. A study of the homology of Kuga varieties. Izv. Akad. Nauk SSSR Ser. Mat. 44, 443–464, 480.
[Sho97]Shoup, Victor. (1997) “Lower bounds for discrete logarithms and related problems”. In (Eds.) Advances in cryptology—EUROCRYPT ‘97 (Konstanz), Berlin: Springer.
[BMS06]Bugeaud, Yann, Maurice Mignotte, and Samir Siksek. 2006. Classical and modular approaches to exponential Diophantine equations. II. The Lebesgue-Nagell equation. Compos. Math. 142, 31–62.
[SC03]Siksek, Samir, and John E Cremona. 2003. On the Diophantine equation $xsp 2+7=ysp m$. Acta Arith. 109, 143–149.
[Sil82]Silverman, J. (1992) The arithmetic of elliptic curves. New York: Springer-Verlag.
[Sho80a]Shokurov, V. 1980. Shimura integrals of cusp forms. Izv. Akad. Nauk SSSR Ser. Mat. 44, 670–718, 720.
[Sou75]Soule, Christophe. 1975. Cohomologie de $SLsb3(Z)$. C. R. Acad. Sci. Paris Ser. A-B 280, Ai, A251–A254.
[Sta79]Staffeldt, R E. 1979. Reduction theory and $Ksb3$ of the Gaussian integers. Duke Math. J. 46, 773–798.
[Ste97]Steel, Allan. 1997. A new algorithm for the computation of canonical forms of matrices over fields. J. Symbolic Comput. 24, 409–432.
[Ste]Steel, Allan. . Advanced Matrix Algorithms. ** , .
[Ste99a]Steenrod, Norman. (1999) The topology of fibre bundles. Princeton, NJ: Princeton University Press.
[SV01]Stein, W. 2001. Cuspidal modular symbols are transportable. LMS J. Comput. Math. 4, 170–181 (electronic).
[SW02]Stein, William A, and Mark Watkins. (2002) “A database of elliptic curves—first report”. In (Eds.) Algorithmic number theory (Sydney, 2002), Berlin: Springer.
[Ste99b]Stein, W. 1999. protecttt HECKE: The Modular Symbols Calculator. software (available online) , .
[Ste00]Stein, W. 2000. Explicit approaches to modular abelian varieties. Ph.D. thesis, University of California, Berkeley , .
[Str69]Strassen, Volker. 1969. Gaussian elimination is not optimal. Numerische Mathematik 13, 354–356.
[Stu87]Sturm, J. (1987) “On the congruence of modular forms”. In (Eds.) Number theory (New York, 1984–1985), Berlin: Springer.
[Gun00b]Gunnells, P E. 2000. Symplectic modular symbols. Duke Math. J. 102, 329–350.
[Tat75]Tate, J. (1975) “Algorithm for determining the type of a singular fiber in an elliptic pencil”. In (Eds.) Modular functions of one variable, IV (Proc. Internat. Summer School, Univ. Antwerp, Antwerp, 1972), Berlin: Springer.
[TW95]Taylor, R, and A Wiles. 1995. Ring-theoretic properties of certain protectHecke algebras. Ann. of Math. (2) 141, 553–572.
[Tho89]Thompson, J G. (1989) “Hecke operators and noncongruence subgroups”. In (Eds.) Group theory (Singapore, 1987), Berlin: de Gruyter.
[Tot05]Toth, A. 2005. On the Steinberg module of Chevalley groups. Manuscripta Math. 116, 277–295.
[vdG]van der Geer, Gerard. . Siegel Modular Forms.
[SV03]Speh, B, and T N Venkataramana. 2003. Construction of Some Generalised Modular Symbols.
[Vig77]Vigneras, Marie-France. (1977) “Series th^eta des formes quadratiques indefinies”. In (Eds.) Seminaire Delange-Pisot-Poitou, 17e annee (1975/76), Theorie des nombres: Fasc. 1, Exp. No. 20, Paris: Secretariat Math..
[VZ84]Vogan, Jr. 1984. Unitary representations with nonzero cohomology. Compositio Math. 53, 51–90.
[Vog97]Vogan, Jr. (1997) “Cohomology and group representations”. In (Eds.) Representation theory and automorphic forms (Edinburgh, 1996), Providence, RI: Amer. Math. Soc..
[Vog85]Vogtmann, K. 1985. Rational homology of Bianchi groups. * Math. Ann.* 272, 399–419.
[Vor08]Vorono, G. 1908. Nouvelles applications des parametres continus `a la theorie des formes quadratiques, I. Sur quelques proprietes des formes quadratiques positives parfaites . J. Reine Angew. Math. 133, 97-178.
[Wan95]Wang, Xiang Dong. 1995. $2$-dimensional simple factors of $Jsb 0(N)$. Manuscripta Math. 87, 179–197.
[Wan82]Wang, Kai. 1982. A proof of an identity of the Dirichlet $L$-function. Bull. Inst. Math. Acad. Sinica 10, 317–321.
[Wes]Weselman, U. . .
[Whi90]Whitley, E. 1990. Modular symbols and elliptic curves over imaginary quadratic number fields.
[SW05]Socrates, Jude, and David Whitehouse. 2005. Unramified Hilbert modular forms, with examples relating to elliptic curves. Pacific J. Math. 219, 333–364.
[Wil00]Wiles, A. 2000. The Birch and Swinnerton-Dyer Conjecture. ** , .
[Wil95]Wiles, A. 1995. Modular elliptic curves and Fermat’s last theorem. Ann. of Math. (2) 141, 443–551.
[Li75]Li, W-C. 1975. Newforms and functional equations. Math. Ann. 212, 285–315.
[Yas05b]Yasaki, D. 2005. On the existence of spines for $mathbfQ$-rank 1 groups.
[Yas05a]Yasaki, D. 2005. On the cohomology of $mathrmSU(2,1)$ over the Gaussian integers.