next up previous contents
Next: A way to compute Up: The Naive Algorithms Previous: The Naive Algorithms   Contents

A way to compute $ m_E$

Use the (not-exact!) sequence:

$\displaystyle H_1(E,\mathbf{Z}) \rightarrow H_1(X_0(N),\mathbf{Z}) \rightarrow H_1(E,\mathbf{Z}).$

The composition map from $ H_1(E,\mathbf{Z})\rightarrow H_1(E,\mathbf{Z})$ is multiplication by $ m_E$, and $ H_1(E,\mathbf{Z})$ can be computed because its image in $ H_1(X_0(N),\mathbf{Z})$ is saturated, as $ E$ is optimal. This algorithm is described in detail in [Kohel-Stein, ANTS IV], and amounts to finding ``left and right eigenvectors'' and taking their dot product.



William A Stein 2002-09-29