next up previous contents
Next: The History Up: Some Modular Degree and Previous: Contents   Contents

The Definitions

Let $ E/\mathbf{Q}$ be an elliptic curve that is an optimal quotient of $ J_0(N_E)$, where $ N=N_E$ is the conductor of $ E$. Here $ J_0(N)$ is the Jacobian of the algebraic curve $ X_0(N)$ and a deep theorem implies that there is a surjective morphism $ \pi: X_0(N)\rightarrow E$. The condition that $ E$ is optimal means that the induced map $ \pi_* : J_0(N) \rightarrow E$ has (geometrically) connected kernel.

Definition 1.1   The modular degree of $ E$ is

$\displaystyle m_E = \deg(\pi).$

One reason that the modular degree is well worth thinking about is that an assertion about how $ m_E$ grows relative to $ N_E$ is equivalent to the ABC Conjecture.

Let $ f=f_E=\sum a_n q^n \in S_2(\Gamma_0(N))$ be the newform attached to $ E$.

Definition 1.2   The congruence modulus of $ E$ is

$\displaystyle c_E = \char93 \left(\frac{S_2(\Gamma_0(N),\mathbf{Z})}{\mathbf{Z}{}f + (\mathbf{Z}{}f)^{\perp}}\right),$

where $ (\mathbf{Z}{}f)^{\perp}$ is the unique $ \mathbf{T}=\mathbf{Z}[\ldots T_n \ldots]$-module complement of $ \mathbf{Z}{}f$ in $ S_2(\Gamma_0(N),\mathbf{Z})$. Equivalently,

$\displaystyle c_E = \max\{ c :
f\equiv g \pmod{c}$    for some $g&isin#in;(Zf)^&perp#perp;$ $\displaystyle \}.$



William A Stein 2002-09-29