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8.5 The Pairing Between Modular Symbols and

Modular Forms

In this section we define a pairing between modular symbols and modular forms,
and prove that the Hecke operators respect this pairing. We also define an
involution on modular symbols, and study its relationship with the pairing.
This pairing is crucial in much that follows, because it gives rise to period maps
from modular symbols to certain complex vector spaces.

Fix an integer weight k ≥ 2 and a finite-index subgroup Γ of SL2(Z). Let
Mk(Γ) denote the space of holomorphic modular forms of weight k for Γ, and
Sk(Γ) its cuspidal subspace. Following [Mer94, §1.5], let

Sk(Γ) = {f : f ∈ Sk(Γ)}

denote the space of antiholomorphic cuspforms. Here f is the function on h∗

given by f(z) = f(z).

Define a pairing

(Sk(Γ) ⊕ Sk(Γ)) × Mk(Γ) → C (8.5.1)

by letting

〈(f1, f2), P{α, β}〉 =

∫ β

α

f1(z)P (z, 1)dz +

∫ β

α

f2(z)P (z, 1)dz,

and extending linearly. Here the integral is a complex path integral along a
simple path from α to β in h (so, e.g., write z(t) = x(t)+iy(t), where (x(t), y(t))
traces out the path, and consider two real integrals).

Proposition 8.5.1. The integration pairing is well defined, i.e., if we replace
P{α, β} by an equivalent modular symbols (equivalent modulo the left action of
Γ), then the integral is the same.

Proof. We use the change of variables formulas for integration and the fact that
f1 ∈ Sk(Γ) and f2 ∈ Sk(Γ). For example, if k = 2, g ∈ Γ and f ∈ Sk(Γ), then

〈f, g{α, β}〉 = 〈f, {g(α), g(β)}〉

=

∫ g(β)

g(α)

f(z)dz

=

∫ β

α

f(g(z))dg(z)

=

∫ β

α

f(z)dz = 〈f, {α, β}〉,

where f(g(z))dg(z) = f(z)dz because f is a weight 2 modular form. For the
case of arbitrary weight k > 2, see Exercise 8.4
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The integration pairing is very relevant to the study of special values of
L-functions. The L-function of a cusp form f =

∑

anqn ∈ Sk(Γ1(N)) is

L(f, s) = (2π)sΓ(s)−1

∫

∞

0

f(it)ts
dt

t
(8.5.2)

=
∞
∑

n=1

an

ns
(8.5.3)

The equality of the integral and the Dirichlet series follows by switching the
order of summation and integration, which is justified using standard estimates
on |an| (see, e.g., [Kna92, §VIII.5]).

For each integer j with 1 ≤ j ≤ k− 1, we have setting s = j and making the
change of variables t 7→ −it in (8.5.2), that

L(f, j) =
(−2πi)j

(j − 1)!
·
〈

f, Xj−1Y k−2−(j−1){0,∞}
〉

. (8.5.4)

The integers j as above are called critical integers, and when f is an eigenform,
they have deep conjectural significance. We will discuss explicit computation of
L(f, j) in Chapter 10.

Theorem 8.5.2 (Shokoruv). The pairing 〈· , ·〉 is nondegenerate when restricted
to cuspidal modular symbols:

〈· , ·〉 : (Sk(Γ) ⊕ Sk(Γ)) × Sk(Γ) → C.

The pairing is also compatible with Hecke operators. Before proving this,
we define an action of Hecke operators on Mk(Γ1(N)) and on Sk(Γ1(N)). The
definition is very similar to the one we gave in Section 2.4 for modular forms
of level 1. For a positive integer n, let Rn be a set of coset representatives
for Γ1(N)\∆n from Lemma 8.3.1. For any γ =

(

a b
c d

)

∈ GL2(Q) and f ∈
Mk(Γ1(N)) set

f |[γ]k = det(γ)k−1(cz + d)−kf(γ(z)).

Also, for f ∈ Sk(Γ1(N)), set

f |[γ]′k = det(γ)k−1(cz + d)−kf(γ(z)).

Then for f ∈ Mk(Γ1(N)),

Tn(f) =
∑

γ∈Rn

f |[γ]k

and for f ∈ Sk(Γ1(N)),

Tn(f) =
∑

γ∈Rn

f |[γ]′k.

This agrees with the definition from 2.4 when N = 1.
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Remark 8.5.3. If Γ is an arbitrary finite index subgroup of SL2(Z), then we
can define operators T∆ on Mk(Γ) for any ∆ with ∆Γ = Γ∆ = ∆ and Γ\∆
finite. For concreteness we do not do the general case here or in the theorem
below, but the proof is exactly the same (see [Mer94, §1.5]).

Finally we prove the promised Hecke compatibility of the pairing. This proof
should convince you that the definition of modular symbols is sensible, in that
they are natural objects to integrate against modular forms.

Theorem 8.5.4. If f = (f1, f2) ∈ Sk(Γ1(N))⊕Sk(Γ1(N)) and x ∈ Mk(Γ1(N)),
then for any n,

〈Tn(f), x〉 = 〈f, Tn(x)〉.

Proof. We follow [Mer94, §2.1] (but with more details), and will only prove the
theorem when f = f1 ∈ Sk(Γ1(N)), the proof in the general case being the
same.

Let α, β ∈ P1(Q), P ∈ Zk−2[X, Y ], and for g =
(

a b
c d

)

∈ GL2(Q), set j(g, z) =
cz+d. Let n be any positive integer, and let Rn be a set of coset representatives
for Γ1(N)\∆n from Lemma 8.3.1.

We have

〈Tn(f), P{α, β}〉 =

∫ β

α

Tn(f)P (z, 1)dz

=
∑

δ∈R

∫ β

α

det(δ)k−1f(δ(z))j(δ, z)−kP (z, 1)dz.

Now for each summand corresponding to the δ ∈ R, make the change of variables
u = δz. Thus we make #R change of variables. Also, we will use the notation
g̃ =

(

d −b
−c a

)

= det(g) · g−1 for g ∈ GL2(Q). We have

〈Tn(f), P{α, β}〉 =
∑

δ∈R

∫ δ(β)

δ(α)

det(δ)k−1f(u)j(δ, δ−1(u))−kP (δ−1(u), 1)d(δ−1(u))

Note that δ−1(u) = δ̃(u), since a linear fractional transformation is unchanged
by a nonzero rescaling of a matrix that induces it. Thus by the quotient rule,
using that δ̃ has determinant det(δ), we see that

d(δ−1(u)) = d(δ̃(u)) =
det(δ)du

j(δ̃, u)2
.

We next show that

j(δ, δ−1(u))−kP (δ−1(u), 1) = j(δ̃, u)k det(δ)−kP (δ̃(u), 1). (8.5.5)

From the definitions, and again using that δ−1(u) = δ̃(u), we see that

j(δ, δ−1(u)) =
det(δ)

j(δ̃, u)
,
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which proves that (8.5.5) holds. Thus

〈Tn(f), P{α, β}〉 =
∑

δ∈R

∫ δ(β)

δ(α)

det(δ)k−1f(u)j(δ̃, u)k det(δ)−kP (δ̃(u), 1)
det(δ)du

j(δ̃, u)2

Next we use that
(δ.P )(u, 1) = j(δ̃, u)k−2P (δ̃(u), 1).

To see this, note that P (X, Y ) = P (X/Y, 1) · Y k−2. Using this we see that

(δ.P )(X, Y ) = (P ◦ δ̃)(X, Y )

= P

(

δ̃

(

X

Y

)

, 1

)

·

(

−c ·
X

Y
+ a

)k−2

· Y k−2.

Now substituting (u, 1) for (X, 1), we see that

(δ.P )(u, 1) = P (δ̃(u), 1) · (−cu + a)k−2,

as required. Thus finally

〈Tn(f), P{α, β}〉 =
∑

δ∈R

∫ δ(β)

δ(α)

f(u)j(δ̃, u)k−2P (δ̃(u), 1)du

=
∑

δ∈R

∫ δ(β)

δ(α)

f(u) · ((δ.P )(u, 1))du

= 〈f, Tn(P{α, β})〉.

8.6 Exercises

8.1 Suppose M is an integer multiple of N . Prove that the natural map
(Z/MZ)∗ → (Z/NZ)∗ is surjective.

8.2 Prove that SL2(Z) → SL2(Z/NZ) is surjective (see Lemma 8.4.6).

8.3 Compute M3(Γ1(3)) explicitly. List each Manin symbol, the relations they
satisfy, compute the quotient, etc. Find the matrix of T2. (Check: The
dimension of M3(Γ1(3)) is 2, and the characteristic polynomial of T2 is
(x − 3)(x + 3).)

8.4 Finish the proof of Proposition 8.5.1.


