
SAGE: Software for Algebra and Geometry
Experimentation

William Stein

April 10, 2006

William Stein SAGE: Software for Algebra and Geometry Experimentation

The SAGE Mailing List on Thursday, Feb 2, 2006

Dear SAGE community.

My name is Tiziano and I’m from Italy. I’m writing this mail first
of all because I would like to thank you all for SAGE. It’s
something the world was really missing.

[Every free computer algebra system I’ve tried has] “reinvented
many times the wheel without being able to build the car.”

Goal of SAGE: Build the car.

William Stein SAGE: Software for Algebra and Geometry Experimentation

Another Email...

Dear William,

[...] I think that you are doing a superb work
with Sage, and thank you for it.

Best,

Henri [Cohen (co-started GP/PARI in 1987)]

(But much works remains to be done!)
William Stein SAGE: Software for Algebra and Geometry Experimentation

My Story

I 1997-98: Hecke and interpreter in C++ (based on other
code); for modular forms research with Buzzard and Mazur.

I 1998: D. Kohel: “too bad you have to write interpreter”;
vast amount of Magma code

I 1998: A. Steel: 2 days in Berkeley teaching me Magma

I 1999-2004: I wrote heaps of Magma code (3 Sydney visits),
and tried to convert everyone I met to using it.

I 2000: M. Stoll –“Magma – Everything under one roof”

I 2004: Frustration: Magma is closed source, closed
development model, and expensive; authorship issues; no
user-defined objects; hard to save/load data (no eval
command) – not a mainstream programming language.

William Stein SAGE: Software for Algebra and Geometry Experimentation

I S. Hillion (Berkeley) – Love using Python in my job.

I Nov 2004: Gonzalo Tornaria (Austin) – “if I come up with
a new algorithm what should I implement it in?”

I Jan 2005: D. Joyner – winter AMS meeting; SAGE is born

I One year of work with many people:
David Kohel, David Joyner, Iftikhar Burhanuddin, John
Cremona, Martin Albrecht, Wilson Cheung, Alex Clemesha,
Neal Harris, Naqi Jaffery, David Kirkby, Jon Hanke, Gregg
Musiker, Kyle Schalm, Steven Sivek, Justin Walker, Mark
Watkins, Joe Wetherell, Karim Belebas, John Tate, and many
others...

I Feb 4–5: SAGE Days at UCSD

I Many more contributors now! Gonzalo Tornaria, Kiran
Kedlaya, Justin Walker, ... and I’m getting new code (and
offers of support) from people I’ve never heard of constantly.

William Stein SAGE: Software for Algebra and Geometry Experimentation

SAGE Days 2006

William Stein SAGE: Software for Algebra and Geometry Experimentation

SAGE Has 3 Distinct Complementary Goals

1. Distribution of free open source mathematics software.

2. New computer algebra system: structural like Gap and
Magma; object-oriented; user extensible; does not try to make
sense of nonsense like Mathematica, Maple, and PARI do.

3. Better way to use all your favorite (commercial or free)
mathematics software together.

William Stein SAGE: Software for Algebra and Geometry Experimentation

1. Distribution of Free Open Source Software

I Free self-contained distribution of the very best open source
math software that has an active community.

I SAGE source tarball: under 50MB; all GPL or compatible;
you can change anything, rebuild, make any changed versions
available, etc.

I Type sage -sdist <version> to make distro from your
local modified version of sage. Type sage -bdist
<version> to make a binary. Darcs patches.

William Stein SAGE: Software for Algebra and Geometry Experimentation

Does Open Source Matter for Math Research?

“You can read Sylow’s Theorem and its proof in Huppert’s book in the
library [...] then you can use Sylow’s Theorem for the rest of your life free
of charge, but for many computer algebra systems license fees have to be
paid regularly [...]. You press buttons and you get answers in the same
way as you get the bright pictures from your television set but you cannot
control how they were made in either case.

With this situation two of the most basic rules of conduct in
mathematics are violated: In mathematics information is passed on
free of charge and everything is laid open for checking. Not applying
these rules to computer algebra systems that are made for mathematical
research [...] means moving in a most undesirable direction. Most
important: Can we expect somebody to believe a result of a program
that he is not allowed to see? ”

– J. Neubüser in 1993 (he started GAP in 1986).

William Stein SAGE: Software for Algebra and Geometry Experimentation

The SAGE Website

William Stein SAGE: Software for Algebra and Geometry Experimentation

Not-included With SAGE and Why

1. NZMATH – provides inspiration (but not included)

2. Macaulay2 – supported but not included; working with Dan
Grayson right now to make it part of SAGE.

3. Gnuplot – screwy license (e.g., I wanted to change C source
so paths not hard coded, but this is not allowed!)

4. KASH – closed source (but FREE and very powerful)

5. Magma – expensive and closed source (the dominant
system in arithmetic geometry)

6. Mathematica / Maple – expensive and closed source

7. MATLAB – no interface, since I don’t have it; plan to buy a
copy using startup money ($100/year).

William Stein SAGE: Software for Algebra and Geometry Experimentation

2. A New Computer Algebra System

$ ls
algebras databases __init__.py modular schemes
all.py edu interfaces modules sets
categories ext libs monoids structure
coding functions matrix plot tests
crypto groups misc rings version.py

$ cat */*.py */*/*.py */*.pyx */*/*.pyx |sort|uniq|wc -l
57064

$ cat */*.py */*/*.py */*.pyx */*/*.pyx |sort|uniq|grep "sage: " | wc -l
6602 <-------- EXAMPLE INPUT LINES!

William Stein SAGE: Software for Algebra and Geometry Experimentation

3. Cooperation – “Everything Under One Roof”

SAGE has many interfaces (bold included with SAGE):

I GAP (started 1986)– groups, discrete math

I Singular (started 1987) – polynomial computation

I PARI/GP (started 1987) – number theory

I Maxima (started 1967) – symbolic manipulation

I mwrank, ec, simon, sea – elliptic curves

I Macaulay2 (started 1993) – commutative algebra

I Gnuplot – 2d and 3d graphics

I KANT/KASH – very sophisticated algebraic number theory

I Magma – vast high-quality research math environment

I Maple – symbolic, educational

I Mathematica – symbolic, numerical, educational

I Octave (started 1992) – numerical analysis

William Stein SAGE: Software for Algebra and Geometry Experimentation

−2006 = −1 · 2 · 17 · 59

sage: (-2006).factor()
-1 * 2 * 17 * 59
sage: gap(-2006).FactorsInt()
[-2, 17, 59]
sage: pari(-2006).factor()
[-1, 1; 2, 1; 17, 1; 59, 1]
sage: maxima(-2006).factor()
-2*17*59
sage: kash(-2006).Factorization()
[<2, 1>, <17, 1>, <59, 1>], extended by: ext1 := -1
sage: magma(-2006).Factorization(nvals = 2) # number of return vals
([<2, 1>, <17, 1>, <59, 1>], -1)
sage: maple(-2006).ifactor()
-‘‘(2)*‘‘(17)*‘‘(59)
sage: mathematica(-2006).FactorInteger()
{{-1, 1}, {2, 1}, {17, 1}, {59, 1}}

William Stein SAGE: Software for Algebra and Geometry Experimentation

Non-math SAGE Components

1. IPython: Wonderful Interactive Shell

2. Python: A Mainstream Programming Language (many
books; numerous excellent tutorials; constantly being
improved by dozens of developers)

3. Pyrex: Compiled Python-Like Extension Language

4. Saving and Loading Objects (cPickle and ZODB)

William Stein SAGE: Software for Algebra and Geometry Experimentation

1. IPython: Wonderful Interactive Shell

Under very active development (especially parallel version); widely
used by applied math/physics people.

William Stein SAGE: Software for Algebra and Geometry Experimentation

2. Python: A Mainstream Programming Language

I started 1991 by Guido van Rossum (who is now at Google)

I Numerous libraries available for networking, graphics, video
game programming, numerical analysis, etc.

I A “gluing language” (unlike many languages), i.e., easier to
use code from other languages.

I Easy to read other people’s code (unlike, e.g., Perl, C++)

I Free and open source (unlike, e.g., Java)
I From Python Advocacy FAQ:

I Run Web sites
I Write GUI interfaces
I Control number-crunching code on supercomputers
I Build test suites for C or Java code

William Stein SAGE: Software for Algebra and Geometry Experimentation

Guido van Rossum

William Stein SAGE: Software for Algebra and Geometry Experimentation

3. Pyrex: Compiled Python-Like Extension Language

def factorial(n):
cdef mpz_t f
cdef int i
cdef char* s

mpz_init(f)
mpz_set_si(f, n)

for i from 2 <= i <= n:
mpz_mul_si(f, f, i)

s = mpz_get_str(NULL, 32, f)
r = int(s,32)
free(s)
mpz_clear(f)
return r

William Stein SAGE: Software for Algebra and Geometry Experimentation

Pyrex is CRUCIAL to Success of SAGE

1. Written by Greg Ewing of New Zealand.

2. Code converted to C code that is compiled by a C compiler.

3. Can use any Python functions and objects from Pyrex and any
C libraries.

4. Time-critical SAGE code gets implemented in Pyrex, which
is (as fast as) C code, but easier to read (e.g., since all
variables and scopes are explicit).

William Stein SAGE: Software for Algebra and Geometry Experimentation

Pyrex Works

Point of the following is to illustrate using Pyrex. There are more
sophisticated algorithms for computing factorials (by balancing the
multiplies to take advantage of fast asymptotic arithmetic, and by
using prime tables).

sage: time n = factorial_pure_python(100000)
CPU times: user 78.72 s, sys: 2.64 s, total: 81.37 s
sage: time v = pari(’prod(n = 1,100000,n)’)
CPU times: user 18.89 s, sys: 0.19 s, total: 19.08 s
sage: time n = factorial_ZZ(100000)
CPU times: user 8.56 s, sys: 2.22 s, total: 10.79 s
sage: time n = factorial(100000) # Pyrex (first try)
CPU times: user 6.93 s, sys: 0.00 s, total: 6.93 s

William Stein SAGE: Software for Algebra and Geometry Experimentation

4. Saving and Loading Objects

Almost any individual object in SAGE can easily be loaded and
saved in a compressed format, as can sessions. This requires little
programmer support, even for very complicated objects.

sage: E = EllipticCurve([1,2,3,4,5])
sage: time v = E.anlist(10^5)
CPU times: user 1.03 s, sys: 0.22 s, total: 1.25 s
Wall time: 1.59
sage: E.save(’E’)
sage: quit
Exiting SAGE (CPU time 0m1.45s, Wall time 0m25.36s).

$ sage
sage: F = load(’E’)
sage: time v = F.anlist(10^5)
CPU times: user 0.00 s, sys: 0.00 s, total: 0.00 s
sage: save_session, load_session, ...

William Stein SAGE: Software for Algebra and Geometry Experimentation

Help System

1. function? gives documentation about function (extracted
from source code)

2. function?? gives the source code of function

3. Because Python is so readable, function?? is incredibly
useful and users frequently use it.

4. help(module or object) gives man-page like docs

5. TO DO: full text search

William Stein SAGE: Software for Algebra and Geometry Experimentation

Attribution

I Whenever possible, files, function docs, and the reference
manual state clearly who the author is.

I All new code submitted to SAGE must be under a GPL
compatible license. Author may optionally keep copyright.

I Citation: William Stein and David Joyner, SAGE: System for
algebra and geometry experimentation, Communications in
Computer Algebra (SIGSAM Bulletin) (July 2005),
http://sage.sourceforge.net/.

I VERY Important! Always cite the underlying backends used
by SAGE for your work, e.g., GAP, Singular, PARI, Kash, etc.
Ask in SAGE forum and/or use function?? to view source.

William Stein SAGE: Software for Algebra and Geometry Experimentation

Example 1: Bernoulli Numbers

Easy to compare timings in different systems...

sage: a = maple(’bernoulli(1000)’) # Wall time: 9.27
sage: a = maxima(’bern(1000)’) # Wall time: 5.49
sage: a = magma(’Bernoulli(1000)’) # Wall time: 2.58
sage: a = gap(’Bernoulli(1000)’) # Wall time: 5.92
sage: a = mathematica(’BernoulliB[1000]’) #W time: 1.01
calcbn (http://www.bernoulli.org) # Time: 0.06

sage: a = gp(’bernfrac(1000)’) # Wall time: 0.00?!

The above led to a paper I’m writing with Kevin McGown...

(NOTE: Mathematica 5.2 is much faster than Mathematica 5.1 at

computing Bernoulli numbers, and the timing is almost identical to PARI

(for n > 1000), though amusingly Mathematica 5.2 is slow for n ≤ 1000!)

William Stein SAGE: Software for Algebra and Geometry Experimentation

Example 2: Elliptic Curves L-series

sage: E = EllipticCurve(’37a’); E
Elliptic Curve defined by y^2 + y = x^3 - x over Rational Field
sage: E.Lseries(1.1) --> 0.032330449021518493
sage: E.Lseries(1) --> 0.00000000000000000
sage: plot([float(E.Lseries(float(n)/20)) for n in range(10,30)])
sage: L = EllipticCurve(’389a’).Lseries
sage: plot([float(L(float(n)/20)) for n in range(10,30)])

William Stein SAGE: Software for Algebra and Geometry Experimentation

Example 2 (continued): Complex L-series

sage: E = EllipticCurve(’389a’)
sage: E.Lseries_extended(1+I, 50)
-0.33297168182616760 + 0.37317660446124179*I
sage: E.Lseries_extended(1+0.2*I, 50)
-0.029679202996999034 + 0.0034727623999086183*I

William Stein SAGE: Software for Algebra and Geometry Experimentation

Example 3: Birch and Swinnerton-Dyer

sage: E = EllipticCurve(’37a’)
sage: E.sha_an() --> 1
sage: E.non_surjective() --> []
sage: E.sha_an() --> 1
sage: E.regulator() --> 0.051111408239999996
sage: E.gens() --> [(0 : 0 : 1)]
sage: E.heegner_discriminants(50) --> [-3, -4, -7, -11, -40, -47]
sage: E.heegner_index(-7) # Kolyvagin ==> Sha trivial
[0.999990645298, 1.00000935475]
sage: E.q_expansion(5)

--> q - 2*q^2 - 3*q^3 + 2*q^4 + O(q^5)
sage: E.simon_two_descent ()
(1, 1, [(0 : 108 : 1)])
sage: E.sea(next_prime(10^30))
1000000000000001426441464441649

William Stein SAGE: Software for Algebra and Geometry Experimentation

Summary: Cool Features of SAGE

1. Mainstream programming language

2. Save and load individual data and sessions

3. DVI and HTML logging

4. Easy-to-use compiled extension language (can easily use C
libraries).

5. attach, load; even works with compiled code.

6. All examples in documentation tested

William Stein SAGE: Software for Algebra and Geometry Experimentation

General To Do

MUCH is left to do. I hope YOU will help!

1. Much new code still needs to be written for plotting,
algebraic geometry, linear algebra, number theory, etc.,
especially when no open source implementations exist.

2. Optimization — parts of SAGE are currently very slow.

3. Many excellent free packages need to be included, e.g.,
genus2reduction, sympow, Rubinstein’s L-functions package.

4. Documentation! Examples! More Documentation! Even
more examples!

5. Package Distribution: rpm, msi, deb, pkg, etc. Need user
support. The sage-mindist-*.*.*.tar package is supposed
to make this easier.

6. STR: Sage Technical Reports: (Unusual?) Journal;
refereed, widely mirrored, subsequent traditional journal
publication.

William Stein SAGE: Software for Algebra and Geometry Experimentation

Modular Forms To Do

1. Optimize modular symbols: Modular symbols over Q and
cyclotomic fields are implemented for weight k ≥ 2 and
Γ0(N), Γ1(N), and character, but not optimized.

2. Modular forms: Not even a good design in place.

3. Dirichlet characters: Need more documentation and
example code. Faster enumeration of characters (to get
Eisenstein series).

4. Bernoulli numbers: Finish implementation of fast algorithm.

5. Method of graphs: Need to implement.

6. Quaternion algebras: Half-way done.

7. Modular abelian varieties: Nothing in place yet.

William Stein SAGE: Software for Algebra and Geometry Experimentation

Specific Goals at UW

1. Seminar: Start a SAGE seminar (weekly talks)

2. Students: Have up to 5 undergrads (or grads) working part
time on SAGE at a given time

3. Workshops: 1-2 international workshops per year

William Stein SAGE: Software for Algebra and Geometry Experimentation

