
Math 168A Final Project: Computing ap for Elliptic Curves

Neal Harris
Professor William Stein

UCSD

December 12, 2005

1 Introduction

In this paper, we examine some algorithms for computing ap for a given elliptic curve E,
and a prime number p, where:

#E(Fp) = p + 1− ap.

It turns out that computing ap is crucial for computing the L-function L(E, s) of an
elliptic curve. We take this as sufficient motivation for computing ap.

It is known that for an elliptic curve defined by:

y2 = x3 + ax + b

that:

ap = −
∑
x∈Fp

(x3 + ax + b

p

)
. (1)

This gives an O(p1+o(1)) running time algorithm. But we can do better than this näıve
approach. A more efficient way to compute ap involves using the Baby-Step Giant-Step
algorithm.

In this paper, we describe this algorithm (given in [1]), and give some examples of how
it works.

2 The Algorithms

2.1 Hasse’s Theorem

First, we state a useful theorem.
Hasse’s Theorem. For any elliptic curve E defined over some finite field Fq:

1

|#E(Fq)− (q + 1)| ≤ 2
√

q.

In particular, when q = p, we have:

|ap| ≤ 2
√

p.

2.2 Shanks’ Baby-Step Giant Step Algorithm

The following is a useful method for solving the discrete logarithm problem. Let G be a
group.

Baby-Step Giant Step. If we know:

B

2
< C ≤ |G| ≤ B

then we can find |G| in the following way:

1. Initialize. Set h← 1, C1 ← C,B1 ← B,S ← {1}, L← {1}.

2. Choose a random g ∈ G. Set q ← d
√

B1 − C1e.

3. Baby steps. Set x0 ← 1, x1 ← gh. If x1 = 1, then set n ← 1 and go to step 6.
Otherwise, for each 2 ≤ r ≤ q − 1, set xr ← x1 · xr−1. For each 0 ≤ r < q, set
S1,r ← xr · S, S1 ←

⋃
0≤r<q S1,r. If we find 1 ∈ S1,r, for r > 0, set n ← r (for the

smallest such r) and go to step 6. Otherwise, set y ← x1 · xq−1, z ← xC1
1 , n← C1.

4. Giant Steps. For each w ∈ L, set z1 ← z · w. Look for z1 in S1. If z1 is found with
z1 ∈ S1,r, set n← (n− r) and go to step 6.

5. Set z ← y · z, n← (n + q). If n ≤ B1, go to step 4. Otherwise we have |G| > B. So
we terminate the algorithm with an error message.

6. Set n← nm.

7. For each prime p dividing n: (a) set S1 ← gn/q · S; (b) if we have z ∈ L such that
z ∈ S1, set n← n/p and go to step 7.

8. Set h← hn. If h ≥ C then output h and terminate. In this case |G| = h. Otherwise,
set B1 ← bB1/nc, C1 ← dC1/ne, q ← d

√
ne, S ←

⋃
0≤r<q gr · S, y ← gq,

L←
⋃

0≤a≤q ya · L, then go to step 2.

Now we can apply this algorithm with G = E(Fp), C = p + 1− 2
√

p, B = p + 1 + 2
√

p.
This gives us an algorithm for computing ap in O(p1/4+o(1)) time.

But we can do even better.

2

2.3 The Shanks-Mestre Algorithm

We begin with a theorem:
Theorem. For an elliptic curve E defined by the following:

E : y2 = x3 + ad2x + bd3, d 6= 0

there are two isomorphism classes for all values of d. If we have (d
p) = 1, then the

curve is isomorphic to the curve defined above with d = 1. For (d
p) = −1, these curves are

isomorphic to another curve.
We state another theorem.

Theorem. Suppose we have two elliptic curves, E, and E′, where:

E : y2 = x3 + ad2x + bd3

E′ : y2 = x3 + ae2x + be3

with (d
p) = 1, (e

p) = −1. Further, suppose the group structures are as follows:

E(Fp) ∼= Z/d1Z× Z/d2Z
E′(Fp) ∼= Z/d′1Z× Z/d′2Z

with d1|d2, and d′1|d′2. Then for p > 457:

max(d2, d
′
2) > 4

√
p.

Armed with this result, we can state the Shanks-Mestre Algorithm:

1. Initialize. Set x← −1, A← 0, B ← 1, k1 ← 0.

2. Repeat x← x + 1, d← x3 + ax + b, k ← (d
p) until k 6= 0, and k 6= k1. Set k1 ← k. If

k = −1, set A1 ← 2p + 2−A mod B. Otherwise, set A1 ← A.

3. Let m be the smallest integer such that m > p + 1− 2
√

p and m ≡ A1 mod B. Now
use Baby-step Giant-step to find n such that m ≤ n < p + 1 + 2

√
p, n ≡ m mod B

and such that n · (xd, d2) = 0 on the curve Y 2 = X3 + ad2X + bd3.

4. Factor n, and from this deduce the order h of (xd, d2).

5. Find the smallest integer h′ which is a multiple of h, and such that h′ ≡ A1 mod B.
If h′ < 4

√
p, set B ← lcm(B, h), and A← h′ mod B if k1 = 1,

A← 2p + 2− h′ mod B if k1 = −1, then go to step 2.

6. Let N be the unique multiple of h′ such that p+1−2
√

p < N < p+1+2
√

p. Output
ap = p + 1− k1N . Terminate.

This algorithm will run in O(p1/4+ε) time for any ε > 0.

3

3 Examples

3.1 The Näıve Algorithm

Consider the curve E defined over F7:

E : y2 = x3 + 4x.

With such a small field, the näıve algorithm described in (1) gives a very reasonable
way to compute ap.

We have:

a7 = −
{(0

7

)
+

(5
7

)
+

(2
7

)
+

(4
7

)
+

(3
7

)
+

(5
7

)
+

(2
7

)}
= 0− 1 + 1 + 1− 1− 1 + 1
= 0.

Now we check this with SAGE:

sage: E = EllipticCurve([4,0])
sage: E
Elliptic Curve defined by y^2 = x^3 + 4*x over Rational Field
sage: E.ap(7)
0

3.2 Shanks-Mestre

Now, we show explicitly how the Shanks-Mestre Algorithm works. We will suppress some
of the details in the computation (i.e. use SAGE to compute multiples of points on E).
Consider the following elliptic curve defined over F499:

E : y2 = x3 + x.

Step 1 is rather easy. We set x ← −1, A ← 0, B ← 1, k1 ← 0. Now, in step 2, we
increment x so that we have x = 0. But then we have d = x3 + x = 0, and therefore
(d

p) = 0. So, we repeat. Now we have x = 1 =⇒ d = 2 =⇒ (d
p) = −1. Since we have

B = 1, we needn’t change A1.
Now we see that since B = 1, and 455 < p + 1− 2

√
p < 456 =⇒ m = 456. Now, using

SAGE, we have the following:

sage: d = 2
sage: p = 499
sage: E = EllipticCurve(GF(p), [d^2, 0])
sage: E

4

Elliptic Curve defined by y^2 = x^3 + 4*x over Finite field of size 499
sage: x = 1
sage: P = E([x*d, d^2])
sage: 456*P
0

So in fact our n is n = 456. Now, factoring gives n = 23 ∗3∗19. Now, we begin looking
for the order of P .

sage: 2*P
(0, 0)
sage: 4*P
0

So we see that |P | = 4. Now h← 4. Again, since B = 1, we have h′ = 4 as well. Since
4 < 4

√
p, we set B ← lcm(B, h) = lcm(1, 4) = 4. Now, we have 2p + 2 − h′ = 996, which

is a multiple of 4. So, we still have A = 0. Now, we return to step 2.
We increment x, and have x = 2. So d = 10 =⇒ (d

p) = −1. So we repeat. Now we
have x = 3. This gives d = 30 =⇒ (30

p) = 1. So we have have k ← 1, and set k1 ← 1.
And we already have A = A1.

Since 4|456, and A1 = 0, we still have m = 456. Also, we know that 544 < p+1+2
√

p <
545. Now, using SAGE, we have:

sage: E = EllipticCurve(GF(499), [900, 0])
sage: P = E([90, 900])
sage: for i in range(456, 544):

....: if (i*P==0):

....: i;

....:
_31 = 500

So we have n = 500. Factoring, we have n = 2253. Now, let’s find the order of P :

sage: 250*P
(0, 0)
sage: 100*P
0
sage: 20*P
(213, 394)
sage: 4*P
(405, 201)

5

So, we see that |P | = 100. With this, we set h← 100. Since B = 4, we have B|h, and
therefore h ≡ A1 mod B. So, set h′ ← h = 100. Note that h′ > 4

√
p.

Finally, we see that the unique multiple of h′ such that p+1− 2
√

p < N < p+1+2
√

p
is 5 · 100 = 500. So, set N ← 500.

And now we output ap = p + 1− k1N = 499 + 1− 1 · 500 = 0.
Let’s check this with SAGE:

sage: E = EllipticCurve([1,0])
sage: E
Elliptic Curve defined by y^2 = x^3 + x over Rational Field
sage: E.ap(499)
0

Bingo.

4 Computing ap for Large p

There are many situations in which we would like to calculate ap for very large p; cryp-
tography is the canonical example of such a situation. It turns out that there is a better
algorithm for computing ap for very large primes. Let q be a large prime. Let Eq be an
elliptic curve over Fq.

This algorithm is known as Schoof’s Algorithm, after Rene Schoof. First we recall that:

−2
√

q < aq < 2
√

q. (2)

Pick some collection of smaller primes p1, p2, . . . , pk such that:

p1p2 . . . pk > 4
√

q.

Then, compute aq mod pi for 1 ≤ i ≤ k. Use the Chinese Remainder Theorem to
compute aq mod p1p2 . . . pk. But then we compute aq mod 4

√
q, and by 2 above, we can

compute aq exactly.
This algorithm does have an asymptotically better running time than Shanks-Mestre.

Specifically, the running time is O
(
ln8(q)

)
. It is important to note that Schoof’s algorithm

is only asymptotically better. For medium sized primes (approximately for p < 260),
Shanks-Mestre is still faster.

We suppress any further details (including how exactly to compute aq mod pi for the
various pi). Instead, we reference [2].

5 Some Data

6

In what follows, we give some timing information for computing ap for various primes, and
for the following curve E:

E : y2 = x3 + x + 1.

For those readers familiar with the notion of complex multiplication on an elliptic curve,
note that E does not have complex multiplication. If it did, computing ap would be much
easier. This is because there is an algorithm which is beyond the scope of this paper that
computes ap much faster for curves that are equipped with complex multiplication than
for those curves that do not have complex multiplication.

What follows is a table of timing information. All computations were performed on
a dual Opteron 248 Sun Fire V20Z server with 8GB RAM. The software package used is
SAGE.

p ap CPU time (s)
1000000000000037 1847783 0.01

100000000000000000039 6324941747 0.38
10000000000000000000009 139275907750 1.88
100934583920633341444919 -72259137428 2.58

10000000000000000000000013 3919779458826 13.48
1000000000000000000000000103 -44679400742701 49.03
10000000000000000000000000331 -38606803965466 60.17
11000000000000000000000000117 -94320506755356 77.94
50000000000000000000000000143 141508045851704 118.81
97000000000000600000000000031 214203597842946 150.07
99900048574389597849375783563 13989829642156 109.45
99904857484389597849375783601 -375287338085352 177.12

1000000000000000000000000000057 1911205794915458 396.16
7063271223590103947858054109143 2019116948430037 512.01

To compute ap for all primes p < 106 took 9.18 seconds.

6 Concluding Remarks

Computing ap for an elliptic curve E gives us information about the L-function L(E, s) for
E. Since we can learn a lot from L, computing ap is worthwhile.

By using the Hasse bound and the Baby-Step Giant-Step Algorithm, we can efficiently
compute ap for p > 457 with the Shanks-Mestre Algorithm.

However, Shanks-Mestre is too slow if we wish to use very large primes, as in more than
60 bits, say. In cases with large primes, it is more efficient to use Schoof’s Algorithm to
compute ap. This method uses information about ap modulo a collection of smaller primes
to infer ap.

7

References

[1] H. Cohen. A Course in Computational Algebraic Number Theory. Springer, 1996.

[2] R. Schoof. Counting points on elliptic curves over finite fields, 1995.

[3] W. Stein and D. Joyner. Sage: System for algebra and geometry experimentation, 2005.

8

